{ "cells": [ { "cell_type": "markdown", "id": "9cc3b252-0afc-404f-a7c2-706d0a7e3c89", "metadata": { "editable": true, "id": "9cc3b252-0afc-404f-a7c2-706d0a7e3c89", "slideshow": { "slide_type": "" }, "tags": [ "hide-input" ] }, "source": [ "### Asking scientific questions of models - Exercises & Answers" ] }, { "cell_type": "markdown", "id": "a734dcce-afbf-409a-8c38-ce4a535f4ea5", "metadata": { "id": "a734dcce-afbf-409a-8c38-ce4a535f4ea5" }, "source": [ "The exercises here are designed to get you comfortable using models to make predictions and having them answer questions of interest, as opposed to relying on a suite of tests picked from a flowchart." ] }, { "cell_type": "markdown", "id": "0cde8377-c11f-4474-95f2-7e6d353ecba1", "metadata": { "id": "0cde8377-c11f-4474-95f2-7e6d353ecba1" }, "source": [ "## Traditional approaches from a model-based perspective\n", "To get things clear, lets do some standard approaches such as t-tests and ANOVAs from the perspective of a linear model. We won't interpret the coefficients, we'll just get the model to tell us the answer directly and compare it to the traditional answer.\n", "\n", "### a. Imports\n", "Import `pandas`, `pingouin`, `statsmodels.formula.api`, `seaborn`, and also `marginaleffects`." ] }, { "cell_type": "code", "execution_count": 1, "id": "83f7ae21-b1f1-4d9b-93b2-720c03bbe75b", "metadata": { "editable": true, "executionInfo": { "elapsed": 11, "status": "ok", "timestamp": 1723926881418, "user": { "displayName": "Alex Jones", "userId": "11094282981700434339" }, "user_tz": -60 }, "id": "83f7ae21-b1f1-4d9b-93b2-720c03bbe75b", "slideshow": { "slide_type": "" }, "tags": [ "hide-input" ] }, "outputs": [], "source": [ "# Your answer here\n", "import pandas as pd\n", "import pingouin as pg\n", "import statsmodels.formula.api as smf\n", "import seaborn as sns\n", "import marginaleffects as me\n", "\n", "sns.set_style('whitegrid')" ] }, { "cell_type": "markdown", "id": "9dc75c2e-25e4-4ed9-8f57-b60a682e038e", "metadata": { "id": "9dc75c2e-25e4-4ed9-8f57-b60a682e038e" }, "source": [ "### b. Loading up data\n", "We will continue our exploration of the 'Teaching Ratings' dataset here, and use `marginaleffects` to explore the consequences of our models.\n", "\n", "The data can be found here: https://vincentarelbundock.github.io/Rdatasets/csv/AER/TeachingRatings.csv\n", "\n", "Read it into a dataframe called `profs`, and show the top 5 rows." ] }, { "cell_type": "code", "execution_count": 2, "id": "a87dbb65-80a5-4a29-a8b6-e26838ab5792", "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 224 }, "editable": true, "executionInfo": { "elapsed": 10, "status": "ok", "timestamp": 1723926881418, "user": { "displayName": "Alex Jones", "userId": "11094282981700434339" }, "user_tz": -60 }, "id": "a87dbb65-80a5-4a29-a8b6-e26838ab5792", "outputId": "efe2f990-4fea-415e-f736-d6ae07fc0649", "slideshow": { "slide_type": "" }, "tags": [ "hide-input" ] }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
rownamesminorityagegendercreditsbeautyevaldivisionnativetenurestudentsallstudentsprof
01yes36femalemore0.2899164.3upperyesyes24431
12no59malemore-0.7377324.5upperyesyes17202
23no51malemore-0.5719843.7upperyesyes55553
34no40femalemore-0.6779634.3upperyesyes40464
45no31femalemore1.5097944.4upperyesyes42485
\n", "
" ], "text/plain": [ " rownames minority age gender credits beauty eval division native \\\n", "0 1 yes 36 female more 0.289916 4.3 upper yes \n", "1 2 no 59 male more -0.737732 4.5 upper yes \n", "2 3 no 51 male more -0.571984 3.7 upper yes \n", "3 4 no 40 female more -0.677963 4.3 upper yes \n", "4 5 no 31 female more 1.509794 4.4 upper yes \n", "\n", " tenure students allstudents prof \n", "0 yes 24 43 1 \n", "1 yes 17 20 2 \n", "2 yes 55 55 3 \n", "3 yes 40 46 4 \n", "4 yes 42 48 5 " ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Your answer here\n", "# Read in dataset\n", "profs = pd.read_csv('https://vincentarelbundock.github.io/Rdatasets/csv/AER/TeachingRatings.csv')\n", "profs.head()" ] }, { "cell_type": "markdown", "id": "76eeeca9-97b3-463a-b485-5878d5b0124d", "metadata": { "id": "76eeeca9-97b3-463a-b485-5878d5b0124d" }, "source": [ "### c. The t-test as a marginal effect\n", "We will recreate a t-test with model-based predictions.\n", "\n", "First, conduct a t-test with `pingouin`, comparing the evaluation score of male and female professors." ] }, { "cell_type": "code", "execution_count": 3, "id": "80728e27-f1d7-4b6d-8e87-9d9a7676463d", "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 114 }, "editable": true, "executionInfo": { "elapsed": 8, "status": "ok", "timestamp": 1723926881418, "user": { "displayName": "Alex Jones", "userId": "11094282981700434339" }, "user_tz": -60 }, "id": "80728e27-f1d7-4b6d-8e87-9d9a7676463d", "outputId": "61160ca2-552d-4cbc-86a0-e110873cf56c", "slideshow": { "slide_type": "" }, "tags": [ "hide-input" ] }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Tdofalternativep-valCI95%cohen-dBF10power
T-test-3.266711425.755804two-sided0.001176[-0.27, -0.07]0.30590117.5480.900288
\n", "
" ], "text/plain": [ " T dof alternative p-val CI95% cohen-d \\\n", "T-test -3.266711 425.755804 two-sided 0.001176 [-0.27, -0.07] 0.305901 \n", "\n", " BF10 power \n", "T-test 17.548 0.900288 " ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Your answer here\n", "# T-test with pingouin\n", "pg.ttest(profs.query('gender == \"female\"')['eval'],\n", " profs.query('gender == \"male\"')['eval']\n", " )" ] }, { "cell_type": "markdown", "id": "7af5a6c2-aa6b-4748-a1ed-194884866b78", "metadata": { "id": "7af5a6c2-aa6b-4748-a1ed-194884866b78" }, "source": [ "Now fit a regression model with `statsmodels` predicting evaluations from gender. Call the model `ttest`. Check the summary, and remember the coefficient will equal the mean difference, which we can check our predictions against." ] }, { "cell_type": "code", "execution_count": 4, "id": "69dadb4a-7a67-4d8a-8735-fad9245542c8", "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 253 }, "editable": true, "executionInfo": { "elapsed": 7, "status": "ok", "timestamp": 1723926881418, "user": { "displayName": "Alex Jones", "userId": "11094282981700434339" }, "user_tz": -60 }, "id": "69dadb4a-7a67-4d8a-8735-fad9245542c8", "outputId": "dc7f5e9e-ef3a-46b3-dc75-a56ee5b415dc", "slideshow": { "slide_type": "" }, "tags": [ "hide-input" ] }, "outputs": [ { "data": { "text/html": [ "\n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "
OLS Regression Results
Dep. Variable: eval R-squared: 0.022
Model: OLS Adj. R-squared: 0.020
No. Observations: 463 F-statistic: 10.56
Covariance Type: nonrobust Prob (F-statistic): 0.00124
\n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "
coef std err t P>|t| [0.025 0.975]
Intercept 3.9010 0.039 99.187 0.000 3.824 3.978
gender[T.male] 0.1680 0.052 3.250 0.001 0.066 0.270


Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified." ], "text/latex": [ "\\begin{center}\n", "\\begin{tabular}{lclc}\n", "\\toprule\n", "\\textbf{Dep. Variable:} & eval & \\textbf{ R-squared: } & 0.022 \\\\\n", "\\textbf{Model:} & OLS & \\textbf{ Adj. R-squared: } & 0.020 \\\\\n", "\\textbf{No. Observations:} & 463 & \\textbf{ F-statistic: } & 10.56 \\\\\n", "\\textbf{Covariance Type:} & nonrobust & \\textbf{ Prob (F-statistic):} & 0.00124 \\\\\n", "\\bottomrule\n", "\\end{tabular}\n", "\\begin{tabular}{lcccccc}\n", " & \\textbf{coef} & \\textbf{std err} & \\textbf{t} & \\textbf{P$> |$t$|$} & \\textbf{[0.025} & \\textbf{0.975]} \\\\\n", "\\midrule\n", "\\textbf{Intercept} & 3.9010 & 0.039 & 99.187 & 0.000 & 3.824 & 3.978 \\\\\n", "\\textbf{gender[T.male]} & 0.1680 & 0.052 & 3.250 & 0.001 & 0.066 & 0.270 \\\\\n", "\\bottomrule\n", "\\end{tabular}\n", "%\\caption{OLS Regression Results}\n", "\\end{center}\n", "\n", "Notes: \\newline\n", " [1] Standard Errors assume that the covariance matrix of the errors is correctly specified." ], "text/plain": [ "\n", "\"\"\"\n", " OLS Regression Results \n", "==============================================================================\n", "Dep. Variable: eval R-squared: 0.022\n", "Model: OLS Adj. R-squared: 0.020\n", "No. Observations: 463 F-statistic: 10.56\n", "Covariance Type: nonrobust Prob (F-statistic): 0.00124\n", "==================================================================================\n", " coef std err t P>|t| [0.025 0.975]\n", "----------------------------------------------------------------------------------\n", "Intercept 3.9010 0.039 99.187 0.000 3.824 3.978\n", "gender[T.male] 0.1680 0.052 3.250 0.001 0.066 0.270\n", "==================================================================================\n", "\n", "Notes:\n", "[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.\n", "\"\"\"" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Your answer here\n", "# Fit the model\n", "ttest = smf.ols('eval ~ gender', data=profs).fit()\n", "ttest.summary(slim=True)" ] }, { "cell_type": "markdown", "id": "309098eb-c5fa-4346-8302-2c8449632495", "metadata": { "id": "309098eb-c5fa-4346-8302-2c8449632495" }, "source": [ "Next, use `marginaleffects` to create a datagrid that will give predictions for female and male professors, and pass it to `me.predictions` to make the predictions. Examine the values." ] }, { "cell_type": "code", "execution_count": 5, "id": "e68cdbde-8412-462d-b45e-fcf709251814", "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 213 }, "editable": true, "executionInfo": { "elapsed": 370, "status": "ok", "timestamp": 1723926881781, "user": { "displayName": "Alex Jones", "userId": "11094282981700434339" }, "user_tz": -60 }, "id": "e68cdbde-8412-462d-b45e-fcf709251814", "outputId": "5c953256-76f9-4720-c955-ef3df126a751", "slideshow": { "slide_type": "" }, "tags": [ "hide-input" ] }, "outputs": [ { "data": { "text/html": [ "
\n", "shape: (2, 21)
genderrowidestimatestd_errorstatisticp_values_valueconf_lowconf_highrownamesminorityagecreditsbeautyevaldivisionnativetenurestudentsallstudentsprof
stri32f64f64f64f64f64f64f64i64stri64strf64f64strstrstri64i64i64
"male"04.069030.033548121.2883530.0inf4.0032764.134784305"no"52"more"6.2635e-83.998272"upper""yes""yes"121550
"female"13.9010260.0393399.1874650.0inf3.8239413.978111305"no"52"more"6.2635e-83.998272"upper""yes""yes"121550
" ], "text/plain": [ "shape: (2, 8)\n", "┌────────┬──────────┬───────────┬──────┬─────────┬─────┬──────┬───────┐\n", "│ gender ┆ Estimate ┆ Std.Error ┆ z ┆ P(>|z|) ┆ S ┆ 2.5% ┆ 97.5% │\n", "│ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- │\n", "│ str ┆ str ┆ str ┆ str ┆ str ┆ str ┆ str ┆ str │\n", "╞════════╪══════════╪═══════════╪══════╪═════════╪═════╪══════╪═══════╡\n", "│ male ┆ 4.07 ┆ 0.0335 ┆ 121 ┆ 0 ┆ inf ┆ 4 ┆ 4.13 │\n", "│ female ┆ 3.9 ┆ 0.0393 ┆ 99.2 ┆ 0 ┆ inf ┆ 3.82 ┆ 3.98 │\n", "└────────┴──────────┴───────────┴──────┴─────────┴─────┴──────┴───────┘\n", "\n", "Columns: gender, rowid, estimate, std_error, statistic, p_value, s_value, conf_low, conf_high, rownames, minority, age, credits, beauty, eval, division, native, tenure, students, allstudents, prof" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Your answer here\n", "# Datagrid\n", "datagrid = me.datagrid(ttest, gender=['male', 'female'])\n", "\n", "# Predictions\n", "preds = me.predictions(ttest, newdata=datagrid)\n", "preds" ] }, { "cell_type": "markdown", "id": "aa66843a-07cf-4a7f-979d-89502406757d", "metadata": { "id": "aa66843a-07cf-4a7f-979d-89502406757d" }, "source": [ "Repeat the predictions step but use the `hypothesis` test to get the difference between the predictions." ] }, { "cell_type": "code", "execution_count": 6, "id": "1d815b2a-3c26-46ff-9066-231784dd9d4c", "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 128 }, "editable": true, "executionInfo": { "elapsed": 8, "status": "ok", "timestamp": 1723926881781, "user": { "displayName": "Alex Jones", "userId": "11094282981700434339" }, "user_tz": -60 }, "id": "1d815b2a-3c26-46ff-9066-231784dd9d4c", "outputId": "dbbf6432-97ab-488e-c701-0648cfd03e3d", "slideshow": { "slide_type": "" }, "tags": [ "hide-input" ] }, "outputs": [ { "data": { "text/html": [ "
\n", "shape: (1, 8)
termestimatestd_errorstatisticp_values_valueconf_lowconf_high
strf64f64f64f64f64f64f64
"Row 1 - Row 2"0.1680040.0516953.2499390.0011549.7587680.0666850.269324
" ], "text/plain": [ "shape: (1, 8)\n", "┌───────────────┬──────────┬───────────┬──────┬─────────┬──────┬────────┬───────┐\n", "│ Term ┆ Estimate ┆ Std.Error ┆ z ┆ P(>|z|) ┆ S ┆ 2.5% ┆ 97.5% │\n", "│ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- │\n", "│ str ┆ str ┆ str ┆ str ┆ str ┆ str ┆ str ┆ str │\n", "╞═══════════════╪══════════╪═══════════╪══════╪═════════╪══════╪════════╪═══════╡\n", "│ Row 1 - Row 2 ┆ 0.168 ┆ 0.0517 ┆ 3.25 ┆ 0.00115 ┆ 9.76 ┆ 0.0667 ┆ 0.269 │\n", "└───────────────┴──────────┴───────────┴──────┴─────────┴──────┴────────┴───────┘\n", "\n", "Columns: term, estimate, std_error, statistic, p_value, s_value, conf_low, conf_high" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Your answer here\n", "# Comparison is done via hypothesis\n", "me.predictions(ttest, newdata=datagrid, hypothesis='pairwise')" ] }, { "cell_type": "markdown", "id": "7af377ff-fbb7-4597-88ee-756f80eda804", "metadata": { "id": "7af377ff-fbb7-4597-88ee-756f80eda804" }, "source": [ "### d. Carrying out an ANOVA with linear models and marginal effects\n", "Lets now demonstrate how an ANOVA can be executed easily with a linear model and the examination of marginal effects.\n", "\n", "First, use `pinoguin` to carry out an ANOVA on teaching evaluations, using tenure and gender as the factors - that is, examine whether male and female professors differ in their evaluations depending on whether they have achieved tenure or not." ] }, { "cell_type": "code", "execution_count": 7, "id": "ece27b38-a2db-48f8-97c6-e8a636037065", "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 173 }, "editable": true, "executionInfo": { "elapsed": 8, "status": "ok", "timestamp": 1723926881781, "user": { "displayName": "Alex Jones", "userId": "11094282981700434339" }, "user_tz": -60 }, "id": "ece27b38-a2db-48f8-97c6-e8a636037065", "outputId": "79d963c0-ca43-41c0-d431-4d41fcd2bd8b", "slideshow": { "slide_type": "" }, "tags": [ "hide-input" ] }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
SourceSSDFMSFp-uncnp2
0gender3.6289141.03.62891412.6153380.0004220.026749
1tenure2.8293951.02.8293959.8359360.0018210.020979
2gender * tenure4.1879131.04.18791314.5586080.0001540.030743
3Residual132.035435459.00.287659NaNNaNNaN
\n", "
" ], "text/plain": [ " Source SS DF MS F p-unc np2\n", "0 gender 3.628914 1.0 3.628914 12.615338 0.000422 0.026749\n", "1 tenure 2.829395 1.0 2.829395 9.835936 0.001821 0.020979\n", "2 gender * tenure 4.187913 1.0 4.187913 14.558608 0.000154 0.030743\n", "3 Residual 132.035435 459.0 0.287659 NaN NaN NaN" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Your answer here\n", "# A Pingouin ANOVA\n", "pg.anova(data=profs, dv='eval', between=['gender', 'tenure'])" ] }, { "cell_type": "markdown", "id": "b6b860ac-19c3-4e85-8a55-2613a24b9f2a", "metadata": { "id": "b6b860ac-19c3-4e85-8a55-2613a24b9f2a" }, "source": [ "This suggests there is a main effect of gender, tenure and an interaction. Usually we'd need to do post-hoc tests to explore these. But we can rely on marginal effects for a simpler interpretation. First, fit a linear regression that is the same as the ANOVA, predicting evaluation measures from gender, tenure, and its interaction. Call it an `anova_model`." ] }, { "cell_type": "code", "execution_count": 8, "id": "5f87872b-c485-41e2-818b-e52a298b17a2", "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 295 }, "editable": true, "executionInfo": { "elapsed": 7, "status": "ok", "timestamp": 1723926881782, "user": { "displayName": "Alex Jones", "userId": "11094282981700434339" }, "user_tz": -60 }, "id": "5f87872b-c485-41e2-818b-e52a298b17a2", "outputId": "d6700cb9-298f-468c-b937-42fadb421a43", "slideshow": { "slide_type": "" }, "tags": [ "hide-input" ] }, "outputs": [ { "data": { "text/html": [ "\n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "
OLS Regression Results
Dep. Variable: eval R-squared: 0.072
Model: OLS Adj. R-squared: 0.066
No. Observations: 463 F-statistic: 11.82
Covariance Type: nonrobust Prob (F-statistic): 1.80e-07
\n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "
coef std err t P>|t| [0.025 0.975]
Intercept 3.8600 0.076 50.890 0.000 3.711 4.009
gender[T.male] 0.5362 0.106 5.047 0.000 0.327 0.745
tenure[T.yes] 0.0552 0.088 0.627 0.531 -0.118 0.228
gender[T.male]:tenure[T.yes] -0.4610 0.121 -3.816 0.000 -0.699 -0.224


Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified." ], "text/latex": [ "\\begin{center}\n", "\\begin{tabular}{lclc}\n", "\\toprule\n", "\\textbf{Dep. Variable:} & eval & \\textbf{ R-squared: } & 0.072 \\\\\n", "\\textbf{Model:} & OLS & \\textbf{ Adj. R-squared: } & 0.066 \\\\\n", "\\textbf{No. Observations:} & 463 & \\textbf{ F-statistic: } & 11.82 \\\\\n", "\\textbf{Covariance Type:} & nonrobust & \\textbf{ Prob (F-statistic):} & 1.80e-07 \\\\\n", "\\bottomrule\n", "\\end{tabular}\n", "\\begin{tabular}{lcccccc}\n", " & \\textbf{coef} & \\textbf{std err} & \\textbf{t} & \\textbf{P$> |$t$|$} & \\textbf{[0.025} & \\textbf{0.975]} \\\\\n", "\\midrule\n", "\\textbf{Intercept} & 3.8600 & 0.076 & 50.890 & 0.000 & 3.711 & 4.009 \\\\\n", "\\textbf{gender[T.male]} & 0.5362 & 0.106 & 5.047 & 0.000 & 0.327 & 0.745 \\\\\n", "\\textbf{tenure[T.yes]} & 0.0552 & 0.088 & 0.627 & 0.531 & -0.118 & 0.228 \\\\\n", "\\textbf{gender[T.male]:tenure[T.yes]} & -0.4610 & 0.121 & -3.816 & 0.000 & -0.699 & -0.224 \\\\\n", "\\bottomrule\n", "\\end{tabular}\n", "%\\caption{OLS Regression Results}\n", "\\end{center}\n", "\n", "Notes: \\newline\n", " [1] Standard Errors assume that the covariance matrix of the errors is correctly specified." ], "text/plain": [ "\n", "\"\"\"\n", " OLS Regression Results \n", "==============================================================================\n", "Dep. Variable: eval R-squared: 0.072\n", "Model: OLS Adj. R-squared: 0.066\n", "No. Observations: 463 F-statistic: 11.82\n", "Covariance Type: nonrobust Prob (F-statistic): 1.80e-07\n", "================================================================================================\n", " coef std err t P>|t| [0.025 0.975]\n", "------------------------------------------------------------------------------------------------\n", "Intercept 3.8600 0.076 50.890 0.000 3.711 4.009\n", "gender[T.male] 0.5362 0.106 5.047 0.000 0.327 0.745\n", "tenure[T.yes] 0.0552 0.088 0.627 0.531 -0.118 0.228\n", "gender[T.male]:tenure[T.yes] -0.4610 0.121 -3.816 0.000 -0.699 -0.224\n", "================================================================================================\n", "\n", "Notes:\n", "[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.\n", "\"\"\"" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Your answer here\n", "# A linear model equivalent\n", "anova_model = smf.ols('eval ~ gender * tenure', data=profs).fit()\n", "anova_model.summary(slim=True)" ] }, { "cell_type": "markdown", "id": "81931246-3836-4ad2-acc8-2a8001ca2971", "metadata": { "id": "81931246-3836-4ad2-acc8-2a8001ca2971" }, "source": [ "With a fitted model, we can easily explore the implications via the predictions.\n", "\n", "First, make a datagrid that gives predictions for tenure and gender. Call it `anova_predmat`, and then use the model to predict those scores, storing them in a dataframe called `anova_predictions`." ] }, { "cell_type": "code", "execution_count": 9, "id": "cb771ac4-c3cc-4ac6-87f8-b6c46b38172c", "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 309 }, "editable": true, "executionInfo": { "elapsed": 7, "status": "ok", "timestamp": 1723926881782, "user": { "displayName": "Alex Jones", "userId": "11094282981700434339" }, "user_tz": -60 }, "id": "cb771ac4-c3cc-4ac6-87f8-b6c46b38172c", "outputId": "b0babe63-dba5-42b7-83f7-8a0d60fb242c", "slideshow": { "slide_type": "" }, "tags": [ "hide-input" ] }, "outputs": [], "source": [ "# Your answer here\n", "# Prediction grid\n", "anova_predmat = me.datagrid(anova_model,\n", " tenure=['yes', 'no'],\n", " gender=['male', 'female'])\n", "\n", "# Output\n", "anova_predictions = me.predictions(anova_model, newdata=anova_predmat)" ] }, { "cell_type": "markdown", "id": "dfbe945e-3969-4513-8cfe-3e9d9279abf8", "metadata": { "id": "dfbe945e-3969-4513-8cfe-3e9d9279abf8" }, "source": [ "It is always sensible to plot predictions before we begin interpretin them. Use `seaborn` to create a line plot that illustrates the interaction. Any way you want is fine - as long as the estimate is on the y axis." ] }, { "cell_type": "code", "execution_count": 10, "id": "71c09c74-134f-4e35-a722-e9232800ce21", "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 159 }, "editable": true, "executionInfo": { "elapsed": 216, "status": "ok", "timestamp": 1723927069461, "user": { "displayName": "Alex Jones", "userId": "11094282981700434339" }, "user_tz": -60 }, "id": "os0rDvsqDUV-", "outputId": "c7b8f145-dd1a-4cc4-8119-ec38128e7322", "slideshow": { "slide_type": "" }, "tags": [ "hide-input" ] }, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjIAAAGsCAYAAADHSE33AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAABPxUlEQVR4nO3de1yUZf7/8dfMwHCQg6J4QFFDRaHMQ7hulnnWPFRrutVWVnaytNXMrEw7uZpmm7pZtm5p1v4693XLxMRMrXU9lxYpeD5iioICguMMM/fvj0kSj4MCNwPv5+NxP4R77sNnRuR+e93XfV0WwzAMRERERPyQ1ewCRERERC6VgoyIiIj4LQUZERER8VsKMiIiIuK3FGRERETEbynIiIiIiN9SkBERERG/FWB2AWXN4/FQWFiI1WrFYrGYXY6IiIj4wDAMPB4PAQEBWK3nb3ep9EGmsLCQ1NRUs8sQERGRS9CyZUvsdvt5X6/0QeZUimvZsiU2m63Ujut2u0lNTS3144qIiPiLsrwWnjr2hVpjoAoEmVO3k2w2W5kEjrI6roiIiL8oy2vhxbqFqLOviIiI+C0FGREREfFbCjIiIiLityp9HxlfeDwenE5nifZxu90AOBwO9ZHxgd1uv2iHLRERkZKq8kHG6XSya9cuPB5PifYzDIOAgAD27Nmj8Wl8YLVaueKKKy74CJ2IiEhJVekgYxgGv/76KzabjdjY2BK1GBiGwYkTJwgJCVGQuQiPx8OBAwf49ddfadiwoT4vEREpNVU6yBQWFlJQUEBMTAyhoaEl2vfUiIPBwcG6MPsgOjqaAwcOUFhYSGBgoNnliIhIJVGlOy2c6uei2x1l79RnfOozFxERKQ2mBhm3282gQYN45plnLrrt1q1badWqFWvWrCn1OtSiUvb0GYuISFkwNci88cYbrF+//qLbnThxglGjRuFwOMqhKhEREfEXpgWZVatWsXjxYnr27HnRbV966SW6d+9eDlWJiIiIPzGls29WVhZjx45l5syZzJ0794LbfvHFF+zZs4eJEycyc+bMSz7nufpmuN1uDMMoWkri1PYl3a8srVmzhnvvvZf09HSzSznLqc/Y7Xarn4yISCVx6vd5Wfxe9/WY5R5kPB4Po0ePZvDgwbRo0eKC2+7YsYNp06bx0UcfXfagc6mpqedcHxAQwIkTJ0o8jswpJ06cuJyyStXJkycBKCgoMLmSs508eRKXy1UhQ5aIiFwaj2Hg9pz/Glseyj3IzJo1C7vdzqBBgy643cmTJxk5ciTPPvssMTExl33ec00x7nA42LNnDyEhIQQHB5foeCUZR2bz5s1MmDCB9PR0GjZsyI033sinn37K0qVLWblyJdOmTWP37t3UqVOHIUOGcNNNNwHwzDPPEBQUxKFDh1i7di1RUVHcc8893HPPPQBkZmbywgsvsHbtWmrUqEGfPn0Aih4l37t3Ly+//DIbN24kNDSUm266iWHDhmG325k3bx4ffPABkZGRpKam8vzzzxedtyxYrVYCAwNp2rRpiT9rERGpWDweg/9sPMDfF2/F6XLx39GdCQ0u3SeA3W63TwGp3IPMl19+SWZmJklJSQBFHXiXLFlSrONvamoqu3fvZuzYsYwdO7Zo/SOPPMItt9zCiy++WKLznmuKcZvNhsViKVouxcX2PX78OA899BC333477733Hrt27eKRRx7BYrGwZcsWhg4dyquvvkq3bt346aefGDp0KDVq1KBjx45YLBbmzZvHrFmzePPNN/n8888ZP348N954I3Xq1OGJJ56gRo0afP/99+Tl5fHoo48W1VRQUMDgwYPp27cvr7/+OtnZ2QwfPhzDMBg1ahQWi4VNmzYxefJkZs2ahcfjKdMni059TmU51buIiJS91TuzmJC8mV8ycgFoFBmALSDAtN/t5R5kFi1aVOz7U49eT548udj6pKQkfv7552Lrmjdvzj//+U/at29ftkWWoqVLl2Kz2fjrX/+K1WqlefPmPPjgg8yePZuPP/6Ybt26FXV4btu2LbfddhsffPABHTt2BKB9+/Zcd911AAwYMIAXXniBvXv3UlhYyPr160lJSSEsLIywsDAee+wxhg0bBsDy5ctxOp088cQTWCwW6tWrx4gRIxg+fDijRo0CIDAwkFtuuUVzIImIyEXtPpLPpK/TSNl0CIDwoACGdmlC69BjBAWYdx2pcCP7tmnThpdeeombb77Z7FJKxcGDB4mJiSkWFmJjYwHIyMhg9erVRa1T4G1Ka9iwYdH30dHRRV+fGhHX4/Fw6JD3B+n0226n75eRkUF2djbt2rUrWmcYBi6Xi6ysrKJjK8SIiMiF5BS4mLF0G++t2o3LbWC1wJ3tGzKyezzVQwLYuHGjqfWZHmTObInZsGHDebfdsmVLWZdT6mJiYjhw4ACGYRTdujlw4AAAdevWpX///owfP75o+8zMTJ+ehKpbty4A+/bto0mTJoA3NJ3+esOGDYu1gB0/fpysrCyioqIADVInIiLn53J7+HDNXqYv2crRAhcAnZtH82yfBOLrhAMVY7R2/Xe8jHXt2hXDMPjnP/+J0+lk586dzJ49G4CBAweyYMECVqxYgcfjYffu3dx9993MmTPnoseNiYnh+uuvZ9KkSeTk5HD48GHeeOONote7dOlCfn4+77zzDk6nk9zcXJ5++mlGjhypACMiIudlGAZL0w9x4/TveWH+Jo4WuIivE8Z79/+BuYP/UBRiKgoFmTIWGhrKzJkz+fbbb/nDH/7AE088wXXXXUdgYCCtWrVi6tSpTJ06lXbt2nH33XfTtWvXoj4sF/Paa68RHh5Oly5dGDBgAB06dCh6LSwsjLlz57JmzRpuuOEGunfvjtVq5a233iqrtyoiIn4u/WAug2av5f6569lxOJ+a1exM7H8VC4d3pFN89MUPYAKLUZFGdCsDbrebjRs30rp163M+fr1r1y6uuOKKS3r8uqCggNDQ0Au2cBw9epSdO3dyzTXXFK3797//TXJyMh9//HHJ3owfu5zPWkREylZmnoNp32zlk3X78Bhgt1kZfH1jhnVpSkRw4Hn3u9A19nL5emzT+8hUdm63m3vvvZc333yTTp06sX//fj788EP+9Kc/mV2aiIhUcQ6Xm9krdjFz2Xbynd7+Ln2vrsczN7YgNirU5Op8oyBTxmrVqsX06dP5+9//zuOPP05ERAT9+/fngQceMLs0ERGpogzDYP5PB5iyaAsZx7wj1LdqEMlz/RJJahxlcnUloyBTDrp3765JL0VEpEL4Yc9RJiRvZsPeYwDERAbzdO8W3HR1DFar/z0MoiAjIiJSBew/WsAri7bw1U/eIUBC7TaGdm7CA9fHEWL33xHXFWREREQqsTyHi7eW7+CdFbtwFnqwWOC2a2IZ1TOe2hH+//CFgoyIiEgl5PYYfLJuH1O/2cKR404Aro2rybh+CVwZE2lydaVHQUZERKSS+e+2w0xMTiP9YB4AcbWq8WyfBLol1K50g6IqyIiIiFQS2zPzmJicxrIthwGIDAnk8e7NuKt9I+wmTuxYlhRkRERE/Fx2vpPpS7bywZq9uD0GAVYL91zbmOHdmlI91G52eWVKQaaK69q1K4899hi33nqr2aWIiEgJnSx08/7KPby+dBt5jkIAeiTWYUzvFsRFh5lcXflQkDmDYRiccF18Nk/DMChwuiGg8LLvN4YE2irdPUsRESk7hmGQsukgk75OZ09WAQCJ9SIY1y+BDk1qmVxd+VKQOY1hGAz85yp+2HO0XM+b1KgGnz1yrc9hZv/+/XTr1o1XXnmFf/zjHxw9epTevXszYMAAxo8fz759+7j66quZNm0adrudyZMns3btWjIzMwkPD+euu+7ikUceOeu4TqeTt956i/nz55OXl0erVq0YN24cjRo1Ku23LCIilyh1fw5/S97M2l3ZAESHBzG6V3MGtG2AzQ8HtLtcCjJn8Kcfge+++46FCxeyb98+/vSnP7F582befvttAgMDueOOO/jwww85cuQI+/fv5/PPPyc8PJzFixczfPhwevfufVZAmTZtGqtXr2bu3LnUrl2bt99+m/vvv5+FCxcSFBRk0rsUERGAgzkOpqSkM+/HDACCA6083DGOIZ2aUC2o6l7Oq+47PweLxcJnj1zr+62lghOEhoaYdmvp/vvvJyQkhPj4eKKjo+nfvz916tQBoHXr1mRkZPDkk09is9kICwvj4MGDRYEkMzOzWJAxDIOPP/6Y119/ndjYWACGDRvGp59+yvLly+nVq9dlvUcREbk0Bc5CZn23k1nf78Dh8gDQv019RvdqTkz1EJOrM5+CzBksFguh9ot/LIZhQKGNUHuAaf1bqlevXvS1zWYjIiKi6Hur1YphGGRlZTFx4kQ2b95MgwYNuOqqqwDweDzFjpWdnU1BQQEjRozAav39ET2Xy0VGRkbZvhERETmLx2Mwb0MGr6akcyj3JADtGtdgXN9EWsVWN7e4CkRBxo/5EqBGjBhB165dmT17NgEBARw9epRPP/30rO1q1KhBUFAQc+bMoXXr1kXrd+7cWdTKIyIi5WP1ziwmJG/ml4xcAGKjQhjTO4HeV9XVwyFnqJyj40iRvLw8goODsdlsZGdnM2HCBMDb0nI6q9XKwIEDee211zh48CAej4f//Oc/9OvXjz179phRuohIlbP7SD5D/r2eO/61ml8ycgkPCmBM7xZ8M7ITfVrWU4g5B7XIVHKTJk3i5ZdfZs6cOURGRtKnTx8SExPZunUr119/fbFtn376aWbMmMGdd97JsWPHiI2N5fXXXycxMdGk6kVEqoacAhczlm7jvVW7cbkNrBa4s31DRnaPp2aYHra4EIthGIbZRZQlt9vNxo0bad26NTZb8WnKHQ4Hu3bt4oorriA4uGQzgHo7+xYQGhqqhOyDy/msRUQqK5fbw4dr9jJ9yVaOFnhbyjs3j+bZPgnE1wk3ubqLu9A1tryOrRYZERGRcmYYBsu2ZDIxOY0dh/MBiK8Txti+iXSKjza5Ov+iICMiIlKO0g/mMmFBGiu2HwGgZjU7I3vEc0e7WAJs6rpaUgoyIiIi5SAzz8G0b7byybp9eAyw26wMvr4xw7o0JSI40Ozy/JaCjIiISBlyuNzMXrGLmcu2k+/0Drja9+p6PHNjC2KjQk2uzv8pyIiIiJQBwzCY/9MBpizaQsaxEwC0ahDJc/0SSWocZXJ1lYeCjIiISCn7Yc9RJiRvZsPeYwDERAbzdO8W3HR1DNYqOLFjWVKQERERKSX7jxYw+et0Fvz8KwChdhtDOzfhgevjCLGX7uPJ4qUgIyIicpnyHC7eWr6Dd1bswlnowWKB266JZVTPeGpHaOyssqQgIyIiconcHoNP1u1j6jdbOHLcCcC1cTUZ1y+BK2MiTa6ualCQERERuQT/3XaYiclppB/MAyCuVjWe7ZNAt4TaGvG9HGnkHT+0cOFCrr32Wq655hqWLVtWLufcv38/zZs3Z//+/eVyPhGRimp7Zh6D313LoNlrST+YR2RIIC/clMiix2+ge2IdhZhyphaZMxkGuAp82855AgIMuNwf2sDQEh3js88+o2/fvowbN+7yzisiIj7LzncyfclWPlizF7fHIMBq4Z5rGzO8W1Oqh9rNLq/KUpA5nWHAnF6wb81FN7UA1UrrvLF/hPsX+RRmBg4cyKZNm1i3bh3Lly9nzpw5vPzyy2zYsIHQ0FBuvvlmhg0bht1uZ968eXz++ee0atWK//u//8NqtTJs2DCCgoJ46623yM3NpW/fvowfPx6AHTt2MGXKFLZs2UJ2djYNGjRg9OjRdOnS5aw6jhw5wuTJk1m1ahUWi4WuXbvy1FNPERYWVlqfiohIhXCy0M37K/fw+tJt5DkKAeiRWIcxvVsQF63feWbTraWzVOwmwc8//5ykpCSGDBnC/Pnzue+++2jWrBnff/89H374IStXrmTGjBlF2//www/UqVOH1atXM3z4cCZNmsSaNWtYuHAhc+fO5fPPP2fdunUA/PWvfyU+Pp5vvvmG9evXc/311/Piiy+eVYPH42Ho0KFYrVZSUlL46quvyMzM5Pnnny+vj0FEpMwZhsGiX36l57TvmbgwjTxHIYn1Ivjwwfa8fU+SQkwFoRaZ01ks3pYRH24tGYZBQcEJQkNDLv9+aAlvLZ2yfPlynE4nTzzxBBaLhXr16jFixAiGDx/OqFGjAAgNDeXee+/FYrFw/fXX43a7eeCBBwgJCaFly5bUrl2bjIwM2rVrx6xZs6hTpw6GYZCRkUFERASHDh0667y//PILmzZt4t1336VaNW+71NNPP82NN97Ic889R40aNS7v8xARMVnq/hz+lryZtbuyAYgOD2J0r+YMaNsAmwa0q1AUZM5ksYDdh5tGhgGFFrBfWggpDRkZGWRnZ9OuXbvTyjJwuVxkZWUBUL169aKgZbV6G+AiIiKKtrdarXg8HgDS09MZOnQohw8fpkmTJkRFRWEYxlnn3b9/P263m06dOhVbb7fb2bdvn4KMiPitgzkOpqSkM+/HDACCA6083DGOIZ2aUC1Il8yKSH8rfqxu3bo0bNiQRYsWFa07fvw4WVlZREV55/HwtbXo0KFDjBgxgjfeeIOuXbsCkJKSwuLFi8953uDgYNasWYPN5h2p0ul0sm/fPho1anS5b0tEpNwVOAuZ9d1OZn2/A4fL+5+7/m3qM7pXc2Kqh5hcnVyI+sj4sS5dupCfn88777yD0+kkNzeXp59+mpEjR5b4dld+fj5ut5uQEO8/2O3bt/Pmm28C3pByuquvvppGjRoxefJk8vPzcTgcvPzyy9x333243e7SeXMiIuXA4zH4/If9dPn7cv7x7TYcLg/tGtfgy2HXMe321goxfkBBxo+FhYUxd+5c1qxZww033ED37t2xWq289dZbJT5WXFwcTz31FKNHj+aaa65hxIgRDBgwgMDAQLZu3Vps24CAAGbNmsWRI0fo2bMn119/PXv37uXdd98lKCiotN6eiEiZWr0zi5vfXMGTn/3EodyTxEaFMPOutnw65FpaxVY3uzzxkcU4VyeISsTtdrNx40Zat25ddBvkFIfDwa5du7jiiisIDi7ZXBjezr4FhIaGavAjH1zOZy0iUpp2H8ln0tdppGzyPswQHhTAY12bcm+HxgQHamLHkrjQNba8jq0+MiIiUiXkFLiYsXQb763ajcttYLXAne0bMrJ7PDXD1JrsrxRkRESkUnO5PXy4Zi/Tl2zlaIELgM7No3m2TwLxdcJNrk4ul4KMiIhUSoZhsGxLJhOT09hxOB+A+DphjO2bSKf4aJOrk9KiICMiIpVO+sFcJixIY8X2IwDUrGZnZI947mgXS4BNz7lUJgoycM5B36R06TMWkfKQmedg2jdb+WTdPjwG2G1WBl/fmGFdmhIRHGh2eVIGqnSQOX0wt1Pjp0jZODUWTWn3ahcRAXC43MxesYuZy7aT7/SOZ9X36no8c2MLYqNCTa5OylKVDjIBAQGEhoZy+PBhAgMDi4bw94VhGJw8eRKr1arHry/C4/Fw+PBhQkNDCQio0j9yIlLKDMNg/k8HmLJoCxnHTgDQqkEkz/VLJKlxlMnVSXmo0leVUxMt7tq1iz179pRo31NzGgUGBirI+MBqtdKwYUN9ViJSan7Yc5QJyZvZsPcYADGRwTzduwU3XR2DVRM7VhlVOsiAd6LDZs2anTUM/8W43W7S09Np2rSpbpf4wG63l6jFS0TkfPYfLWDy1+ks+PlXAELtNh7t1IQHO8YRYtfv46qmygcZ8LYWlHS02VNzCgUHByvIiIiUgzyHi7eW7+CdFbtwFnqwWOC2a2IZ1TOe2hEaMbyqUpAREZEKze0x+GTdPqZ+s4Ujx72t59fG1WRcvwSujIk0uToxm6lBxu12c99991G/fn0mT5581usej4c333yTzz//nNzcXBo0aMCjjz5Knz59TKhWRETK23+3HWZichrpB/MAiKtVjWf7JNAtobb63AlgcpB54403WL9+PfXr1z/n6x988AFffPEF//73v2nYsCHLli1j6NChXHXVVTRs2LCcqxURkfKyPTOPiclpLNtyGIDIkEAe796Mu9o3wh6g/nbyO9OCzKpVq1i8eDE9e/Y87zZ33XUXAwYMIDQ0FKfTSXZ2NiEhIZc0e/KpPi2l5dTxSvu4IiJVWXa+k9e/3c6H6/bh9hgEWC0M+mNDHuvShOqhdsDQ790KpCyvhb4e05Qgk5WVxdixY5k5cyZz584973ZWq5XQ0FBWrFjBQw89hGEYjBkzhtq1a5f4nKmpqZdRcfkfV0SkKnG5Db7eXsBnaccpcHlHAm8XE8Q9V4cTE36S3Vs3m1yhXIiZ18JyDzIej4fRo0czePBgWrRo4dM+f/jDH0hNTWXdunUMHTqU6OjoEveTadmyZak+XeR2u0lNTS3144qIVCWGYbB48yEmf7uVvdkFACTWC2dM7xZ0aFLT5OrkYsryWnjq2BdT7kFm1qxZ2O12Bg0a5PM+drsdgGuvvZZbbrmFr776qsRBxmazlUngKKvjiohUdqn7c/hb8mbW7soGIDo8iNG9mjOgbQNsGtDOr5h5LSz3IPPll1+SmZlJUlISAA6HA4AlS5awfv36YtueepLpmWeeKVrndDqpXr16+RQrIiKl7mCOgykp6cz7MQOA4EArD3eMY0inJlQL0qggUjLl/hOzaNGiYt+fCinnevw6KSmJJ598km7dunHNNdewfPlyFi5cyJw5c8qlVhERKT0FzkJmfbeTWd/vwOHyANC/TX1G92pOTHVN3CuXpsJF3zZt2vDSSy9x88030717d8aNG8e4ceM4cuQIjRs3ZsaMGbRt29bsMkVExEcej8G8DRm8mpLOodyTACQ1qsFz/RJpFVvd3OLE75keZM5sidmwYUOx7wcOHMjAgQPLsyQRESklq3dmMSF5M79k5AIQGxXCmN4J9L6qrga0k1JhepAREZHKZ/eRfCZ9nUbKpkMAhAcF8FjXptzboTHBgXpAQkqPgoyIiJSanAIXM5Zu471Vu3G5DawWuLN9Q0Z2j6dmWJDZ5UklpCAjIiKXzeX28OGavUxfspWjBS4AOjeP5tk+CcTXCTe5OqnMFGREROSSGYbB0vRMJi5MY+fhfADi64Qxtm8ineKjTa5OqgIFGRERuSRpv+YyMTmNFduPAFCzmp2RPeK5o10sATZN7CjlQ0FGRERKJDPPwbRvtvLJun14DLDbrAy+vjHDujQlIjjQ7PKkilGQERERnzhcbmav2MXMZdvJd3pnJu57dT2eubEFsVGhJlcnVZWCjIiIXJBhGMz/6QBTFm0h49gJAFo1iOS5fokkNY4yuTqp6hRkRETkvH7Yc5QJyZvZsPcYADGRwTzduwU3XR2DVRM7SgWgICMiImfZf7SAyV+ns+DnXwEItdt4tFMTHuwYR4hdA9pJxaEgIyIiRfIcLt5avoN3VuzCWejBYoHbrollVM94akcEm12eyFkUZEREBLfH4JN1+5j6zRaOHHcCcG1cTcb1S+DKmEiTqxM5PwUZEZEq7r/bDjMxOY30g3kAxNWqxrN9EuiWUFsTO0qFpyAjIlJFbc/MY2JyGsu2HAYgMiSQx7s34672jbAHaEA78Q8KMiIiVUx2vpPpS7bywZq9uD0GAVYL91zbmOHdmlI91G52eSIloiAjIlJFnCx08/7KPby+dBt5jkIAeiTWYUzvFsRFh5lcncilUZAREankDMMgZdNBJn2dzp6sAgAS60Uwrm8CHZrWMrk6kcujICMiUoml7s/hb8mbWbsrG4Do8CBG92rOgLYNsGlAO6kEFGRERCqhgzkOpqSkM+/HDACCA6083DGOIZ2aUC1Iv/ql8tBPs4hIJVLgLGTWdzuZ9f0OHC4PAP3b1Gd0r+bEVA8xuTqR0qcgIyJSCXg8BvM2ZPBqSjqHck8CkNSoBs/1S6RVbHVzixMpQwoyIiJ+bvXOLCYkb+aXjFwAYqNCGNM7gd5X1dWAdlLpKciIiPip3UfymfR1GimbDgEQHhTAY12bcm+HxgQHamJHqRoUZERE/ExOgYsZS7fx3qrduNwGVgvc2b4hI7vHUzMsyOzyRMqVgoyIiJ9wuT18uGYv05ds5WiBC4DOzaN5tk8C8XXCTa5OxBwKMiIiFZxhGCxNz2TiwjR2Hs4HoFntMMb1S6RTfLTJ1YmYS0FGRKQCS/s1l4nJaazYfgSAmtXsjOwRzx3tYgmwaWJHEQUZEZEKKDPPwbRvtvLJun14DLDbrAy+vjHDujQlIjjQ7PJEKgwFGRGRCsThcjN7xS5mLttOvtMNQN+r6/HMjS2IjQo1uTqRikdBRkSkAjAMg/k/HWDKoi1kHDsBQKsGkTzXL5GkxlEmVydScSnIiIiY7Ic9R5mQvJkNe48BEBMZzNO9W3DT1TFYNbGjyAUpyIiImGRfdgGvLEpnwc+/AhBqt/FopyY82DGOELsGtBPxhYKMiEg5y3O4mLl8B7NX7MJZ6MFigduuiWVUz3hqRwSbXZ6IX1GQEREpJ26PwSfr9jH1my0cOe4E4Nq4mozrl8CVMZEmVyfinxRkRETKwX+3HWZichrpB/MAiKtVjWf7JNAtobYmdhS5DAoyIiJlaHtmHhOT01i25TAAkSGBPN69GXe1b4Q9QAPaiVwuBRkRkTKQne9k+pKtfLBmL26PQYDVwj3XNmZ4t6ZUD7WbXZ5IpaEgIyJSik4Wunl/5R5eX7qNPEchAD0S6zCmdwviosNMrk6k8lGQEREpBYZhkLLpIJO+TmdPVgEAifUiGNc3gQ5Na5lcnUjlpSAjInKZUvfn8LfkzazdlQ1AdHgQo3s1Z0DbBtg0oJ1ImVKQERG5RAdzHExJSWfejxkABAdaebhjHEM6NaFakH69ipQH/UsTESmhAmchs77byazvd+BweQDo36Y+o3s1J6Z6iMnViVQtCjIiIj7yeAzmbcjg1ZR0DuWeBCCpUQ3G9UukdWx1c4sTqaIUZEREfLB6ZxYTkjfzS0YuALFRIYzpnUDvq+pqQDsREynIiIhcwO4j+Uz6Oo2UTYcACA8K4LGuTbm3Q2OCAzWxo4jZFGRERM4hp8DFjKXbeG/VblxuA6sF7mzfkJHd46kZFmR2eSLyGwUZEZHTuNwePlyzl+lLtnK0wAVA5+bRPNsngfg64SZXJyJnUpAREcE7oN3S9EwmLkxj5+F8AJrVDmNcv0Q6xUebXJ2InI+CjIhUeWm/5jIxOY0V248AULOanZE94rmjXSwBNk3sKFKRKciISJWVmedg6uKtfLp+Hx4D7DYrg69vzLAuTYkIDjS7PBHxgYKMiFQ5Dpeb2St2MXPZdvKdbgD6Xl2PZ25sQWxUqMnViUhJKMiISJVhGAbzfzrAlEVbyDh2AoBWDSJ5rl8iSY2jTK5ORC6FqUHG7XZz3333Ub9+fSZPnnzObT766CPmzp1LZmYmtWvX5p577uGuu+4q50pFxN/9sOcoE5I3s2HvMQDqRQbz9I0tuLlVDFZN7Cjit0wNMm+88Qbr16+nfv3653x9yZIlTJ06lbfffptWrVqxceNGHn74YWrVqkWvXr3KuVoR8Uf7sgt4ZVE6C37+FYBQu41HOzXhwY5xhNg1oJ2IvzMtyKxatYrFixfTs2fP825z6NAhHnroIVq3bg1AmzZtaN++PevWrVOQEZELynO4mLl8B7NX7MJZ6MFigduuiWVUz3hqRwSbXZ6IlBJTgkxWVhZjx45l5syZzJ0797zbnXkLKSsri3Xr1jFmzJgSn9Ptdpd4H1+OV9rHFZHL4/YYfLp+P9OWbCMr3wnAH+OiGNu7BYkxEd5t9O9WpFSU5bXQ12OWe5DxeDyMHj2awYMH06JFC5/3O3z4MEOGDOGqq66iX79+JT5vampqifcx87giUnI/HTrJ3J/y2JtTCEBMmI17WoWTVC8QZ+ZONmaaXKBIJWXmtbDcg8ysWbOw2+0MGjTI5302btzIiBEjSEpKYtKkSQQElLzsli1bYrOV3v1wt9tNampqqR9XREpue+ZxJn29heVbjwIQGRLI8K5NuPMPDbEHaEA7kbJSltfCU8e+mHIPMl9++SWZmZkkJSUB4HA4AG/H3vXr15+1/eeff86ECRMYPnw4999//yWf12azlUngKKvjisjFZec7mb5kKx+s2YvbYxBgtXDPtY0Z3q0p1UPtZpcnUmWYeS0s9yCzaNGiYt8/88wzAOd8/DolJYUXX3yRt956i44dO5ZLfSJS8Z0sdPP+yj28vnQbeQ7vbaQeiXUY07sFcdFhJlcnIuWpwg2I16ZNG1566SVuvvlm3njjDdxuN8OHDy+2zU033cT48eNNqlBEzGIYBimbDjLp63T2ZBUAkFgvgnF9E+jQtJbJ1YmIGUwPMme2xGzYsKHo66+++qq8yxGRCip1fw5/S97M2l3ZAESHBzG6V3MGtG2ATQPaiVRZpgcZEZELOZjjYEpKOvN+zAAgONDKwx3jGNKpCdWC9CtMpKrTbwERqZAKnIXM+m4ns77fgcPlAaB/m/qM7tWcmOohJlcnIhWFgoyIVCgej8G8DRm8mpLOodyTACQ1qsG4fom0jq1ubnEiUuEoyIhIhbF6ZxYTkjfzS0YuALFRIYzpnUDvq+pisagfjIicTUFGREy3+0g+k75OI2XTIQDCgwJ4rGtT7u3QmOBAjdMkIuenICMipskpcDFj6TbeW7Ubl9vAaoE72zdkZPd4aoYFmV2eiPgBBRkRKXcut4cP1+xl+pKtHC1wAdApPpqxfROIrxNucnUi4k8UZESk3BiGwdL0TCYuTGPn4XwAmtUOY2zfBDo3r21ydSLijxRkRKRcpP2ay8TkNFZsPwJAzWp2RvaI5452sQTYNLGjiFwaBRkRKVOZeQ6mLt7Kp+v34THAbrMy+PrGDOvSlIjgQLPLExE/pyAjImXC4XIze8UuZi7bTr7TDUDfq+vxzI0tiI0KNbk6EaksFGREpFQZhsH8nw4wZdEWMo6dAKBVg0ie65dIUuMok6sTkcpGQUZESs0Pe44yIXkzG/YeA6BeZDBP39iCm1vFYNXEjiJSBhRkROSy7csu4JVF6Sz4+VcAQu02Hu3UhAc7xhFi14B2IlJ2FGRE5JLlOVzMXL6D2St24Sz0YLHAbdfEMqpnPLUjgs0uT0SqAAUZESkxt8fgk3X7mPrNFo4cdwJwbVxNxvVL4MqYSJOrE5Gq5JKCzP/+9z/+/e9/k5mZyaxZs5gzZw6jRo0iIEC5SKSy+++2w0xMTiP9YB4AcbWq8WyfBLol1NbEjiJS7kqcPL766ismTZrEn//8Z9atWwfA0qVLsVgsPPXUU6VeoIhUDNsz85iYnMayLYcBiAwJZES3Ztz9x0bYAzSgnYiYo8S/ff71r38xc+ZMRo4cidVqJTo6mlmzZrFgwYKyqE9ETJad7+T5L3+h1/T/smzLYQKsFu6/7gq+G92Z+6+/QiFGRExV4haZgwcP0qpVK4CiZuRGjRpRUFBQupWJiKlOFrp5f+UeXl+6jTxHIQA9EuswpncL4qLDTK5ORMSrxEGmcePGfPvtt3Tv3r1o3cqVK2nUqFGpFiYi5jAMg5RNB5n0dTp7srz/QUmsF8G4vgl0aFrL5OpERIorcZAZOXIkQ4cOpVu3bpw8eZIXX3yRBQsW8Nprr5VFfSJSjlL35/C35M2s3ZUNQHR4EKN7NWdA2wbYNKCdiFRAJQ4yHTp04OOPP+aTTz6hffv2eDwe5syZw9VXX10W9YlIOTiY42BKSjrzfswAIDjQysMd4xjSqQnVgvQ0oohUXCX+DTV79mweeOABXnjhhWLrp0+fzuOPP15adYlIOShwFjLru53M+n4HDpcHgP5t6jO6V3NiqoeYXJ2IyMX5FGSys7PZsWMHADNmzKBVq1YYhlH0el5eHu+9956CjIif8HgM5m3I4NWUdA7lngQgqVENxvVLpHVsdXOLExEpAZ+CjN1uZ/jw4Rw9ehSAu++++6zXb7/99tKvTkRK3eqdWUxI3swvGbkAxEaFMKZ3Ar2vqqsB7UTE7/gUZMLCwli1ahUAN954I4sWLSrTokSk9O0+ks+kr9NI2XQIgPCgAB7r2pR7OzQmOFATO4qIfypxH5nzhZjs7GyioqIuuyARKV05BS5mLN3Ge6t243IbWC1wZ/uGjOweT82wILPLExG5LCUOMj///DNTpkzh0KFDeDzezoEul4vs7Gx++eWXUi9QRC6Ny+3hwzV7mb5kK0cLXAB0io9mbN8E4uuEm1ydiEjpKHGQGT9+PLGxsTRr1ox9+/Zx3XXX8f777zNq1KiyqE9ESsgwDJamZzJxYRo7D+cD0Kx2GGP7JtC5eW2TqxMRKV0lDjLbtm3j//2//8f+/fuZOHEigwcPpk2bNowfP57BgweXRY0i4qO0X3OZmJzGiu1HAKhZzc7IHvHc0S6WAJvmRBKRyqfEQSYiIoLg4GBiY2PZtm0bAK1btyYjI6PUixMR32TmOZi6eCufrt+HxwC7zcrg6xszrEtTIoIDzS5PRKTMlDjIxMXF8dFHH/GXv/yF0NBQ0tLSsNvtemxTxAQOl5vZK3Yxc9l28p1uAPpeXY9nbmxBbFSoydWJiJS9EgeZESNG8Oijj3LdddfxwAMPcNttt2Gz2fjLX/5SFvWJyDkYhsH8nw4wZdEWMo6dAKBVg0ie65dIUmM9PSgiVUeJg0zbtm35/vvvCQwM5PbbbychIYG8vDyuu+66sqhPRM7ww56jTEjezIa9xwCoFxnM0ze24OZWMVg1saOIVDGXNBtcdnY2GRkZRdMU2O121q1bR7t27Uq1OBH53b7sAl5ZlM6Cn38FINRu49FOTXiwYxwhdg1oJyJVU4mDzFtvvcU//vGPs9ZbLBbS0tJKpSgR+V2ew8XM5TuYvWIXzkIPFgvcdk0so3rGUzsi2OzyRERMVeIgM3fuXN588026du2qDr4iZcjtMfhk3T6mfrOFI8edAFwbV5Nx/RK4MibS5OpERCqGEgeZgIAAOnfurBAjUob+u+0wE5PTSD+YB0BcrWo82yeBbgm19W9PROQ0JQ4yd911F9OmTeORRx4hLCysLGoSqbK2Z+YxMTmNZVsOAxAZEsiIbs24+4+NsAdoQDsRkTNd0jgyo0aNYvbs2We9pj4yIpcmO9/J9CVb+WDNXtwegwCrhXuubczwbk2pHmo3uzwRkQqrxEFm8uTJ3H///XTo0AGbTU9KiFyOk4Vu3l+5h9eXbiPPUQhAj8Q6jOndgrhotXiKiFxMiYNMXl6eJogUuUyGYZCy6SCTvk5nT1YBAIn1IhjXN4EOTWuZXJ2IiP8ocZDp0aMH33zzDT169CiLekQqvdT9OfwteTNrd2UDEB0exOhezRnQtgE2DWgnIlIiJQ4yDoeDESNG0KRJE6pXr17sCYr333+/VIsTqUwO5jiYkpLOvB+9E6wGBVgZckMcQzo1oVrQJY1NKSJS5ZX4t2fTpk1p2rRpWdQiUikVOAuZ9d1OZn2/A4fLA0D/NvUZ3as5MdVDTK5ORMS/lTjIPPbYY2VRh0il4/EYzNuQwasp6RzKPQlAUqMajOuXSOvY6uYWJyJSSfgcZF588UVefPFFxowZc95tJk2aVCpFifi71TuzmJC8mV8ycgGIjQphTO8Eel9VVwPaiYiUIp+DzKkJIkXk/HYfyWfS12mkbDoEQHhQAI91bcq9HRoTHKjhCkRESpvPQeall14C4I477qBVq1Znvf7999+XXlUifianwMWMpdt4b9VuXG4DqwXubN+Qkd3jqRkWZHZ5IiKVVon7yAwePJgff/yx2Lrjx48zYsQINmzYUGqFifgDl9vDh2v2Mn3JVo4WuADoFB/N2L4JxNcJN7k6EZHKz6cgs2fPHvr27Yvb7cYwDBISEs7apm3btqVenEhFZRgGS9MzmbgwjZ2H8wFoVjuMsX0T6Ny8tsnViYhUHT4FmUaNGvHZZ5+Rm5vLww8/zNtvv13s9aCgIOLj48ukQJGKJu3XXCYmp7Fi+xEAalazM7JHPHe0iyXApokdRUTKk8+3lk61wixYsIDY2Nii9cePH8dut2O3l3xiO7fbzX333Uf9+vWZPHnyBbdNSUlhypQpfPvttyU+j0hpyMxzMHXxVj5dvw+PAXablcHXN2ZYl6ZEBAeaXZ6ISJVU4v8+Op1Ohg0bBsA333zDH//4Rzp27MgPP/xQ4pO/8cYbrF+//oLbuFwu3n77bZ544gk9OSWmcLjcvLlsO11eXc7H67whpu/V9fh2VCfG9E5QiBERMVGJO/u+/PLL1K5dG8MwmDp1KsOHD6datWpMnjyZzz77zOfjrFq1isWLF9OzZ88Lbnf//fcTFBTEQw89xPz580tarsglMwyD+T8dYMqiLWQcOwFAqwaRPNcvkaTGUSZXJyIicAlBZsuWLfzzn/8kIyODvXv3cuedd1KtWjVee+01n4+RlZXF2LFjmTlzJnPnzr3gtq+++ip169Zl3rx5JS21GLfbfVn7n+94pX1cqRh+3HuUlxems2FfDgB1I4N5qmc8N11dD6vVor93ERHK9lro6zFLHGQKCwsxDIP//e9/XHnllYSFhZGdnU1QkG9jZXg8HkaPHs3gwYNp0aLFRbevW7duSUs8p9TU1FI5TnkdV8yRmV/I/0s9zv/2OQAItlno36IaN8VXI4hMfv450+QKRUQqHjOvhSUOMh06dOCvf/0r6enpPPDAA+zbt4+nnnqKzp07+7T/rFmzsNvtDBo0qKSnviwtW7bEZiu9kVXdbjepqamlflwxR56jkH9+t4M5K/fgLPRgscCf2zZgZPem1I4INrs8EZEKqSyvhaeOfTElDjJ/+9vfmDNnDklJSfTr14/MzEyuvPJKRo0a5dP+X375JZmZmSQlJQHgcHj/57tkyZKLdvy9HDabrUwCR1kdV8pHodvDp+v3M/WbLRw57gTg2riajOuXwJUxkSZXJyLiH8y8FpY4yAQFBeFyuZg7dy5vvvkm8+fPZ8OGDRw/fpyQkJCL7r9o0aJi3z/zzDMAF338WqS0/XfbYSYsSGPLoTwArqhVjWf7JNA9obYmdhQR8RMlfvx6xowZrFmzhtdff53AwEBq1apF3bp1mTBhQqkU1KZNGz2dJGVqe2Yeg99dy6DZa9lyKI/IkECe75dIyuM30COxjkKMiIgfKXGLzFdffcVHH31EnTreX/ihoaFMmjSJHj16XFIBZ7bEnG++pltvvZVbb731ks4hApCd72T6kq18sGYvbo9BgNXCPdc2Zni3plQPLfmAjiIiYr4SB5mCggKiorxjaJwaoC44OBirVUOzS8V0stDN+yv38PrSbeQ5CgHokViHMb1bEBcdZnJ1IiJyOUocZFq3bs0bb7zByJEji5rg//3vf9OyZctSL07kchiGQcqmg0z6Op09WQUAJNaLYFzfBDo0rWVydSIiUhpKHGTGjh3Lvffey3/+8x/y8/Pp06cP+fn5vPvuu2VRn8glSd2fw9+SN7N2VzYA0eFBjO7VnAFtG2Czqg+MiEhlUeIgExsbS3JyMsuXLycjI4O6devSuXNnwsLURC/mO5jjYEpKOvN+zAAgKMDKkBviGNKpCdWCSvzjLiIiFdwl/WYPCQmhd+/epV2LyCUrcBYy67udzPp+Bw6XB4D+beozuldzYqpffFgAERHxT/ovqvg1j8dg3oYMXk1J51DuSQCSGtVgXL9EWsdWN7c4EREpcwoy4rdW78xiQvJmfsnIBSA2KoQxvRPofVVdjQUjIlJFKMiI39l9JJ9JX6eRsukQAOFBATzWtSn3dmhMcKCmixARqUoUZMRv5BS4eH3pNt5ftRuX28BqgTvbN2Rk93hqhvk2+7qIiFQuCjJS4bncHj5cs5fpS7ZytMAFQKf4aMb2TSC+TrjJ1YmIiJkUZKTCMgyDpemZTFyYxs7D+QA0qx3G2L4JdG5e2+TqRESkIlCQkQop7ddcJiansWL7EQBqVrMzskc8d7SLJcCm6TBERMRLQUYqlMw8B1MXb+XT9fvwGGC3WRl8fWOGdWlKRHCg2eWJiEgFoyAjFYLD5Wb2il3MXLadfKcbgL4t6/FM7xbERoWaXJ2IiFRUCjJiKsMwmP/TAaYs2kLGsRMAtGoQyXP9EklqHGVydSIiUtEpyIhpfthzlAnJm9mw9xgA9SKDefrGFtzcKgarJnYUEREfKMhIuduXXcAri9JZ8POvAITabTzaqQkPdowjxK4B7URExHcKMlJu8hwuZi7fwewVu3AWerBY4LZrYhnVM57aEcFmlyciIn5IQUbKXKHbw6fr9zP1my0cOe4E4Nq4mozrl8CVMZEmVyciIv5MQUbK1H+3HWbCgjS2HMoD4Ipa1Xi2TwLdE2prYkcREblsCjJSJrZn5jExOY1lWw4DEBkSyIhuzbj7j42wB2hAOxERKR0KMlKqsvOdTF+ylQ/W7MXtMQiwWrjn2sYM79aU6qF2s8sTEZFKRkFGSsXJQjfvr9zD60u3kecoBKBHYh3G9G5BXHSYydWJiEhlpSAjl8UwDFI2HWTS1+nsySoAILFeBOP6JtChaS2TqxMRkcpOQUYu2c/7jzFhQRprd2cDEB0exOiezRlwTQNsGtBORETKgYKMlNivOSd4NWUL837MACAowMqQG+IY0qkJ1YL0IyUiIuVHVx3xWYGzkFnf7WTW9ztwuDwA9G9Tn9G9mhNTPcTk6kREpCpSkJGL8ngM5m3I4NWUdA7lngQgqVENxvVLpHVsdXOLExGRKk1BRi5o9c4sJiRv5peMXABio0IY0zuB3lfV1YB2IiJiOgUZOafdR/KZ9HUaKZsOARAeFMBjXZtyb4fGBAdqYkcREakYFGSkmJwCF68v3cb7q3bjchtYLXBn+4aM7B5PzbAgs8sTEREpRkFGAHC5PXy4Zi/Tl2zlaIELgE7x0Yztm0B8nXCTqxMRETk3BZkqzjAMlqZnMnFhGjsP5wPQrHYYY/sm0Ll5bZOrExERuTAFmSos7ddcJiansWL7EQBqVrMzskc8d7SLJcCmiR1FRKTiU5CpgjLzHExdvJVP1+/DY4DdZmXw9Y0Z1qUpEcGBZpcnIiLiMwWZKsThcjN7xS5mLttOvtMNQN+W9Ximdwtio0JNrk5ERKTkFGSqAMMwmP/TAaYs2kLGsRMAtGoQyXP9EklqHGVydSIiIpdOQaaS+2HPUSYkb2bD3mMA1IsM5ukbW3BzqxismthRRET8nIJMJbUvu4BXFqWz4OdfAQi123i0UxMe7BhHiF0D2omISOWgIFPJ5DlczFy+g9krduEs9GCxwG3XxDKqZzy1I4LNLk9ERKRUKchUEoVuD5+u38/Ub7Zw5LgTgGvjajKuXwJXxkSaXJ2IiEjZUJCpBP677TATFqSx5VAeAFfUqsazfRLonlBbEzuKiEilpiDjx7Zn5jExOY1lWw4DEBkSyIhuzbj7j42wB2hAOxERqfwUZPxQdr6T6Uu28sGavbg9BgFWC/dc25jh3ZpSPdRudnkiIiLlRkHGj5wsdPP+yj28vnQbeY5CAHok1mFM7xbERYeZXJ2IiEj5U5DxA4ZhkLLpIJO+TmdPVgEAifUiGNc3gQ5Na5lcnYiIiHkUZCq4n/cfY8KCNNbuzgYgOjyI0T2bM+CaBtg0oJ2IiFRxCjIV1K85J3g1ZQvzfswAICjAypAb4hjSqQnVgvTXJiIiAgoyFU6Bs5BZ3+1k1vc7cLg8APRvU5/RvZoTUz3E5OpEREQqFgWZCsLjMZi3IYNXU9I5lHsSgKRGNRjXL5HWsdXNLU5ERKSCUpCpAFbvzGJC8mZ+ycgFIDYqhDG9E+h9VV0NaCciInIBCjIm2n0kn0lfp5Gy6RAA4UEBPNa1Kfd2aExwoCZ2FBERuRgFGRPkFLh4fek23l+1G5fbwGqBO9s35PHu8dQKCzK7PBEREb9hapBxu93cd9991K9fn8mTJ59zm++++46///3v7Nu3j3r16vHUU0/RpUuXcq60dLjcHj5YvYfp327jWIELgE7x0Yztm0B8nXCTqxMREfE/pgaZN954g/Xr11O/fv1zvr57927++te/MnXqVDp37szixYt5/PHHWbx4MXXq1Cnnai+dYRgsTc9k4sI0dh7OB6BZ7TDG9k2gc/PaJlcnIiLiv0wLMqtWrWLx4sX07NnzvNv85z//ISkpie7duwPQp08f5s2bxyeffMLw4cNLdD63231Z9Z7veBc7bvrBPF5emM7/dmQBEFXNzshuTbktqQEBNmup1yUiIlJefL0WXs6xL8aUIJOVlcXYsWOZOXMmc+fOPe9227dvJz4+vti6pk2bkp6eXuJzpqamlnifyznuUYebj385ztJdJ/AAAVbo16watyZUo1pgNr+kZpdJPSIiIuWtrK6xvij3IOPxeBg9ejSDBw+mRYsWF9w2Pz+fkJDig8AFBwdTUFBQ4vO2bNkSm630ngRyu92kpqaedVyHy82c/+3mn9/tJN/pTZN9rqrLU73iiY0KLbXzi4iImO1818LSPPbFlHuQmTVrFna7nUGDBl1025CQEBwOR7F1DoeDatWqlfi8Nput1D/k049rGAbzfzrAlEVbyDh2AoBWDSJ5rl8iSY2jSv28IiIiFUVZXWN9Ue5B5ssvvyQzM5OkpCSAoqCyZMkS1q9fX2zb+Ph4Nm3aVGzd9u3bueqqq8qnWB/9sOcoE5I3s2HvMQDqRQbz9I0tuLlVDFZN7CgiIlJmyj3ILFq0qNj3zzzzDMA5H7+++eabeffdd1m4cCE9e/Zk8eLFrF27lrFjx5ZLrReTmV/I8I83kpx6EIBQu41HOzXhwY5xhNg1oJ2IiEhZs5pdwJnatGnD/PnzAWjSpAlvvvkms2bNol27dsycOZMZM2ZwxRVXmFwlfLZ+P8MXHSE59SAWC9yeFMvyJzvz127NFGJERETKiekj+57ZErNhw4Zi33fs2JGOHTuWZ0k+SU79FZcH/hgXxXP9ErkyJtLskkRERKoc04OMv5p2eyuWrfmJ/p2TCAjQxygiImKGCndryV/UCLUTVyNQs1OLiIiYSEFGRERE/JaCjIiIiPgtBRkRERHxWwoyIiIi4rcUZERERMRvKciIiIiI31KQEREREb+lICMiIiJ+S0FGRERE/JaCjIiIiPgtBRkRERHxWwoyIiIi4rcUZERERMRvKciIiIiI31KQEREREb+lICMiIiJ+S0FGRERE/JaCjIiIiPgtBRkRERHxWwoyIiIi4rcUZERERMRvKciIiIiI31KQEREREb+lICMiIiJ+S0FGRERE/JaCjIiIiPgtBRkRERHxWwoyIiIi4rcUZERERMRvKciIiIiI31KQEREREb+lICMiIiJ+S0FGRERE/JaCjIiIiPgtBRkRERHxWwoyIiIi4rcUZERERMRvKciIiIiI31KQEREREb+lICMiIiJ+S0FGRERE/JaCjIiIiPgtBRkRERHxWwFmF+C3tnzNFT+8jWV/Q6hWC0JrQmiU98+QqN+/Do4Ei8XsakVERColBZlLZF07i6gD38OBi2xosZ074BRbV/O0dVEQFAlWNZaJiIhcjILMJfLcMpOMpW/TICoEq+MYFGT9tmT/tmSBKx8MN+Qf9i6+stggpEbxwBMadY7Q89vXITUguLrCj4iIVDkKMpcqIobDjW+hfuvWYLOdexuXA05knxZwsn77/ox1p693HveGn4Ij3sVXFutp4cfH1h+FHxER8XMKMmUpMBgCYyAixvd9Ck+eEXpOtfQcPce6U+EnDwzP7+t9dSr8hEQVv7V1zltev60LqQ7W8wQ3ERGRcqYgU9EEBEFEPe/iq8KTcOLoGQHnQq0/R+FkbvHwk7XNx5NZfmv5ifK99UfhR0REyoiCTGUQEAThdb2LrwqdxcPPRVt/jsLJHMDwrj+RDVnbfTyZxRtmigWci7X+1FD4ERGRizIlyKxatYqpU6eyY8cOQkJCuPHGGxk9ejTBwcFnbTtv3jz+9a9/cejQIeLj43nyySdp166dCVVXMgF2CK/jXXx1Kvyc2e/nVCvPmS1CBdmnhZ+j3qUkgqufu2PzWetOCz82ZXMRkaqk3H/rZ2dnM2TIEF588UX+9Kc/ceTIER544AH+9a9/MXz48GLbfvvtt7zwwgu8/vrr3HDDDXz77bc89NBDzJs3j7i4uPIuXS4l/Lhdv4WcMzs2n/GE1+mtP44c776OY94le4fv5wuOPDvgXKj1J6QG2AJL8imIiEgFUu5BJioqipUrVxIWFoZhGBw7doyTJ08SFRV11rYLFiygX79+dOnSBYCePXvy6aef8n//93+MHj26vEuXS2ELhLDa3sVX7sLfW3jO6tx8ntYfxzHvvo4c75K90/fzBUWe3cfngq0/UQo/IiIVhCnt8GFhYQB06tSJQ4cOkZSUxK233nrWdm63m9DQ0GLrrFYrO3eW4CJ12rFK06njlfZxBbx9an4bN8dXnkI4caxY0LGc+K1vzwlv6LEUff3bnyeOYcHw3v46mQNHd/l8OiMootjYPsapgHPq+6KvT2sJUvgRkUqmLK+Fvh7TYhiGUepn95HD4SAnJ4cnn3ySoKAg3nnnnWKvJycn8/zzz/PWW2/Rtm1bli9fzsiRI2nXrh1z5szx6Rxut5uNGzeWQfXi9ww3NudxApw53sWV+9vXub+vO+NrmyvPG34ugTugGoX2iN+WSAoDf/vTHvn7Ovvv69z2CAyrwo+IVG2tW7fGdr7x2jD5qaXg4GCCg4MZPXo0f/7zn8nJySEyMrLo9b59+5Kdnc1zzz1HTk4OnTp1ol+/fpw4caLE52rZsuUFP4iScrvdpKamlvpxpWLzeNze21gF2UWtO96Wn+yidZaC7N8fff/tTwsGtsJ8bIX5BBX86vP5DHtYsVtaxhmtPMaZ01+ERHmfYhMRKQdleS08deyLKfcg8+OPP/Lss88yf/587HY7AE6nk8DAQEJCQopte/jwYTp27MigQYOK1t1222307NmzxOe12WxlEjjK6rhSQdlsEFgbwkvQ58fj9vbbOW+H56zTQs9pT4EZHizO497Rno/tAcCn6UftYReY0iLqjE7Qv4WgwLOfGBQR8ZWZ18JyDzLNmzfH4XDw2muvMWrUKA4fPswrr7zCwIEDi4LNKevWrWPSpEl8/PHH1KpVi48++ohdu3bRv3//8i5b5NJZT00cGgU09W0fj8fb8nPOx9rPM9jhiWzvIIdF4Wev7zUGVrvAE16nD3h42nqFHxGpAMo9yFSrVo133nmHl19+meuuu47w8HBuuukmhg0bBkCbNm146aWXuPnmm+nTpw87d+7k9ttvp6CggCuvvJL33nuPmjVrlnfZIuXLav09QNRs4ts+Ho+30/Lpj7VftPUn2zu3lysfcvIhp6ThJ6pkrT+BIRc/rohICZja2bc8nOrse7HOQhXluCLlyuPxTldxroBzodYf4xKfUAgMPfeUFsWmujhjnT304scVEVOU5bXQ12NrGFSRqsxq9U4fEVLd95Yfwygefnwd7NBTCK4C75K73/caA0J+CzY1zj+lxZmtP4GhYPGpR5GI+DkFGREpGYvFO4JycCRE+TjCdlH4yeasjs0XmurC44LCE97gU6LwE+zDhKZntP4o/Ij4JQUZESl7xcLPFb7tYxhwMu/crTwXav1xO6HQAbkZ3sVXtiAfJjQ9Y729msKPiMkUZESkYrJYIDjCu9Ro7Ns+huF9Yuv0gONL64/bCe6TkHfAu/jKZj/HlBYXaf2xhyn8iJQiBRkRqTwsFggK9y4lCj/552/lKbb+9PBz0huA8n71Lr6y2X2b0PT0fj9B4Qo/IuehICMiVZvFAkFh3qVGI9/2MQxvp+ViLT3na/05bX2hwxt+jh/0Lr6yBp5nQtMLtP4ERSj8SJWgICMiUlIWi7d/jL0aVG/o+37OgjNaec73uPup1p8j3vDjccHxQ97FV9aAMwLOaeHnfH1/FH7EDynIiIiUF3uod6ke6/s+zoJztPRcpPXHVeB93P1Sws+ZT3qd63H307cJjlT4EVMpyIiIVGSnwk9kA9/3KQo/2T60/vy2uPK94Sc/07v4ymI7R8A5x5QWxW57RXrHMBIpBQoyIiKVzaWEH9eJ87T0nGddQZY3/BhuyD/sXXxlsZ3Wz8fH1p/g6go/ck4KMiIi4p0HK7K+d/GVy3FGa88FJjQ99b3zuDf8FBzxLr6yWIt3cval9Ufhp0pQkBERkUsTGAyBMRAR4/s+hSfPEXBOe7T9XK0/zjzvzO6n1vvKYvWGmQsNanhmEAqp7p2xXvyGgoyIiJSfgCCIqOddfFV48rQBDH1p/cn2TolheLzfn8iGrG0+nszyW8uPDxOaFn1dXeHHRAoyIiJSsQUEQXhd7+KrQmfx0Zsv2vpzFE7mAMZp4We7jyez/Db56kWmtDi9BSi4Oth0CS4N+hRFRKTyCbBDeB3v4qtT4edE9jlaf86Y0PTUn0Xh56h3yd7h+/mKbnuda7DDc7T+hNRQ+DkHfSIiIiJwaeHH7fot5Pgwoemp1x053n0dx7xLicJPpG8TmhY9CVYDbIEl+RT8joKMiIjIpbIFQlht7+Ird+HvLTy+tv44jnn3deT8FoR2+n6+oMjij7lftPUnyq/Cj4KMiIhIebIFQFi0d/GVu9AbZi44pcUZ604cAwzv7a+TOXB0l+/nC4r8fVqLYq08ZzwCH1wdS6GjhB9A6VKQERERqehsAVCtlnfxlcftDTPnvOV1xoSmRd8fpXj42X3hsoCWQVHQKhVsYZfxBi+dgoyIiEhlZLVBtZrexVcet/fW1Vkdm8/d+mOcyOZkUF1CTHz8XEFGREREvKy23zsP0+yim3vcbrZs3Ehrm73sazsPjd0sIiIifktBRkRERPyWgoyIiIj4LQUZERER8VsKMiIiIuK3FGRERETEbynIiIiIiN9SkBERERG/pSAjIiIifktBRkRERPyWgoyIiIj4LQUZERER8VsKMiIiIuK3FGRERETEbwWYXUBZMwwDALfbXarHPXW80j6uiIiIvyjLa+GpY566jp+PxbjYFn7O6XSSmppqdhkiIiJyCVq2bIndbj/v65U+yHg8HgoLC7FarVgsFrPLERERER8YhoHH4yEgIACr9fw9YSp9kBEREZHKS519RURExG8pyIiIiIjfUpARERERv6UgIyIiIn5LQUZERET8loKMiIiI+C0FGREREfFbCjIiIiLitxRkRERExG8pyJzD888/z/33319s3fjx43nqqafYu3cvjzzyCO3bt6dLly5MmzYNp9MJwPHjxxk5ciTt27fnuuuu44EHHmDHjh1mvAUREZFSs3//fpo3b85nn31G165dueaaaxg8eDAHDx4EYMmSJdx66620bduWXr16MXfuXDweT7nUpiBzDgMHDmTVqlUcOnQI8E48mZycTJ8+fbjvvvto1qwZ33//PR9++CErV65kxowZAMyZM4fjx4/z3XffsWzZMqKjo/n73/9u5lsREREpNcuXL+eLL74gJSWFI0eOMHPmTFavXs3jjz/Ogw8+yNq1a5k6dSrvvvsu77//frnUpCBzDldffTVNmjRhwYIFgPcvLiwsjIKCApxOJ0888QRBQUHUq1ePESNG8MEHHwAQHBxMeno6X3zxBYcOHeLll1/mrbfeMvOtiIiIlJqHHnqIiIgIatWqRdeuXdm9ezfz5s2jW7du9OnTh4CAAK688koefvhhPv7443KpKaBczuKHbr31Vr744gseeOAB5s2bR//+/cnIyCA7O5t27doVbWcYBi6Xi6ysLB566CHsdjuff/4548ePJzY2llGjRtGzZ08T34mIiEjpqFWrVtHXAQEBGIZBVlYWCQkJxbZr0KABGRkZ5VKTgsx53HLLLUydOpUNGzbwv//9j+eff54ffviBhg0bsmjRoqLtjh8/TlZWFlFRUWzZsoWuXbty3333kZeXx4cffsjIkSNZvXo14eHhJr4bERGRslG/fn327t1bbN2+ffuIjo4ul/Pr1tJ51KxZk06dOjF+/HiSkpKIiYmhS5cu5Ofn88477+B0OsnNzeXpp59m5MiRWCwWPvvsM5566imysrIICwsjLCyM0NBQ7Ha72W9HRESkTAwYMIClS5fy9ddf43a72bx5M2+//TYDBgwol/MryFzArbfeyubNm4v+MsLCwpg7dy5r1qzhhhtuoHv37lit1qJ+ME888QSNGjWib9++tG3blnnz5jFz5kyCgoLMfBsiIiJlplWrVvzjH//g7bffJikpiccee4y//OUvPPLII+VyfothGEa5nMkPpaenM2jQIFasWKEwIiIiUgGpj8w5HD9+nAMHDjB9+nRuvfVWhRgREZEKSreWzuHgwYPcfvvt5OTkMHToULPLERERkfPQrSURERHxW2qREREREb+lICMiIiJ+S0FGRERE/JaCjIiIiPgtBRkRKXcnT57k4MGDZpchIpWAgoyIlLs777yTlStXml2GiFQCCjIiUu6OHj1qdgkiUkkoyIhIubr//vs5cOAAL7zwAuPHj2fTpk0MGjSIdu3a0bNnT+bOncup4a1mzJjB8OHDefLJJ0lKSuKGG27gtddeKzrWoEGDmDFjRtH3+/fvp3nz5uzfvx+A5s2bM2HCBNq3b18078vKlSsZOHAgSUlJ9O3bl/nz55fjuxeR0qYpCkSkXM2ZM4euXbvy2GOPcd1119G3b19GjhzJnDlz2LNnD0OHDiU4OJg77rgDgMWLFzN58mReeeUVVqxYwZAhQ+jWrRutW7f26Xx79+5l+fLluFwu0tPTefTRR3n11Vfp1q0bP/30E0OHDqVGjRp07NixDN+1iJQVtciIiGnmz59PkyZNuOuuuwgMDKRp06Y88MADfPDBB0XbNG7cmD/96U/YbDY6depEdHQ0u3fv9vkc/fr1IyQkhIiICD7++GO6detGz549sdlstG3blttuu63Y+UTEv6hFRkRMk5GRwaZNm0hKSipa5/F4sNlsRd9HR0cX2ycwMBCPx+PzOWrXrl3sfKtXry52PrfbTcOGDS+lfBGpABRkRMQ0devWpX379syePbto3dGjR8nPz/dpf6vVisvlKrbvmSwWS7Hz9e/fn/Hjxxety8zMRFPOifgv3VoSkXJnt9vJy8vjpptuYuPGjcyfP5/CwkIyMzN55JFHmDx5sk/HadKkCf/973/Jzc0lLy+Pt99++4LbDxw4kAULFrBixQo8Hg+7d+/m7rvvZs6cOaXxtkTEBAoyIlLuBg4cyLRp05g2bRrvvPMOn3zyCR06dOCWW24hLi7O5yAzZMgQatasSbdu3bjlllvo2rXrBbdv1aoVU6dOZerUqbRr1467776brl27MmrUqNJ4WyJiAouhNlURERHxU2qREREREb+lICMiIiJ+S0FGRERE/JaCjIiIiPgtBRkRERHxWwoyIiIi4rcUZERERMRvKciIiIiI31KQEREREb+lICMiIiJ+S0FGRERE/Nb/B8c9qM66YNjPAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Your answer here\n", "# plot\n", "sns.lineplot(data=anova_predictions,\n", " y='estimate', x='tenure',\n", " hue='gender')" ] }, { "cell_type": "markdown", "id": "058ddc5f-eac2-4bc8-88fe-d3593a287224", "metadata": {}, "source": [ "The ANOVA suggested we had the following results:\n", "1. A main effect of gender (differences between men and women, ignoring tenure status)\n", "2. A main effect of tenure (differences between tenured and non-tenured, ignoring gender)\n", "3. An interaction, indicating the difference between one variable (e.g. gender) at one level of the other (say tenured) is different to the other (confusing!)\n", "\n", "Have the model make predictions, and to explore the main effects, use the `by` keyword to ignore one variable and the `hypothesis` keyword to check the differences." ] }, { "cell_type": "code", "execution_count": 11, "id": "748d0f0b-2dec-4771-ab4d-0ad0e44f1e7e", "metadata": { "editable": true, "slideshow": { "slide_type": "" }, "tags": [ "hide-input" ] }, "outputs": [ { "data": { "text/html": [ "
\n", "shape: (1, 8)
termestimatestd_errorstatisticp_values_valueconf_lowconf_high
strf64f64f64f64f64f64f64
"Row 1 - Row 2"0.1753520.0604172.9023760.0037038.0769180.0569370.293766
" ], "text/plain": [ "shape: (1, 8)\n", "┌───────────────┬──────────┬───────────┬─────┬─────────┬──────┬────────┬───────┐\n", "│ Term ┆ Estimate ┆ Std.Error ┆ z ┆ P(>|z|) ┆ S ┆ 2.5% ┆ 97.5% │\n", "│ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- │\n", "│ str ┆ str ┆ str ┆ str ┆ str ┆ str ┆ str ┆ str │\n", "╞═══════════════╪══════════╪═══════════╪═════╪═════════╪══════╪════════╪═══════╡\n", "│ Row 1 - Row 2 ┆ 0.175 ┆ 0.0604 ┆ 2.9 ┆ 0.0037 ┆ 8.08 ┆ 0.0569 ┆ 0.294 │\n", "└───────────────┴──────────┴───────────┴─────┴─────────┴──────┴────────┴───────┘\n", "\n", "Columns: term, estimate, std_error, statistic, p_value, s_value, conf_low, conf_high" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Your answer here\n", "# Main effects\n", "# Gender\n", "me.predictions(anova_model, newdata=anova_predmat, by='gender', hypothesis='pairwise')\n", "\n", "# Tenure\n", "me.predictions(anova_model, newdata=anova_predmat, by='tenure', hypothesis='pairwise')" ] }, { "cell_type": "markdown", "id": "39c2d04c-5d51-42eb-a11c-12bf50d0c9a6", "metadata": {}, "source": [ "Now use the predictions to figure out the 'cause' of the interaction. There are a few ways to do this. You can compare men and women professors who are tenured, and see if that difference is significant, and then see if the difference between non-tenured professors is also significant. What do you observe?" ] }, { "cell_type": "code", "execution_count": 12, "id": "50197fde-97b4-4ab9-826d-bdc0d4b5d3b2", "metadata": { "editable": true, "slideshow": { "slide_type": "" }, "tags": [ "hide-input" ] }, "outputs": [ { "data": { "text/html": [ "
\n", "shape: (2, 10)
gendertermcontrastestimatestd_errorstatisticp_values_valueconf_lowconf_high
strstrstrf64f64f64f64f64f64f64
"female""tenure""mean(yes) - mean(no)"0.0551720.087960.6272410.5305010.914573-0.1172270.227572
"male""tenure""mean(yes) - mean(no)"-0.4058760.082847-4.8990939.6280e-719.98626-0.568254-0.243499
" ], "text/plain": [ "shape: (2, 10)\n", "┌────────┬────────┬──────────────────────┬──────────┬───┬──────────┬───────┬────────┬────────┐\n", "│ gender ┆ Term ┆ Contrast ┆ Estimate ┆ … ┆ P(>|z|) ┆ S ┆ 2.5% ┆ 97.5% │\n", "│ --- ┆ --- ┆ --- ┆ --- ┆ ┆ --- ┆ --- ┆ --- ┆ --- │\n", "│ str ┆ str ┆ str ┆ str ┆ ┆ str ┆ str ┆ str ┆ str │\n", "╞════════╪════════╪══════════════════════╪══════════╪═══╪══════════╪═══════╪════════╪════════╡\n", "│ female ┆ tenure ┆ mean(yes) - mean(no) ┆ 0.0552 ┆ … ┆ 0.531 ┆ 0.915 ┆ -0.117 ┆ 0.228 │\n", "│ male ┆ tenure ┆ mean(yes) - mean(no) ┆ -0.406 ┆ … ┆ 9.63e-07 ┆ 20 ┆ -0.568 ┆ -0.243 │\n", "└────────┴────────┴──────────────────────┴──────────┴───┴──────────┴───────┴────────┴────────┘\n", "\n", "Columns: gender, term, contrast, estimate, std_error, statistic, p_value, s_value, conf_low, conf_high" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Your answer here\n", "me.predictions(anova_model, newdata=anova_predmat, hypothesis='b1=b2') # Tenured, NON significant\n", "me.predictions(anova_model, newdata=anova_predmat, hypothesis='b3=b4') # Non-tenured, significant, males > females\n", "\n", "# Slopes\n", "me.slopes(anova_model, newdata=anova_predmat, variables='tenure', by='gender')" ] }, { "cell_type": "markdown", "id": "4a9d8c72-61ef-47d9-a4ad-a1439fd6bdce", "metadata": {}, "source": [ "### e. ANCOVA done with marginal effects\n", "Let us now add some complexity. ANCOVA is often described as an ANOVA 'adjusting' for another variable. We know it simply as a general linear model, with some kind of categorical predictor, and other continuous predictors that are also in the model. There can be as many categorical predictors and interactions between them as needed, as well as the continuous covariates.\n", "\n", "ANCOVA is a confusing and unnecessary term. Linear models are simpler, and here we will see how. \n", "\n", "First, carry out an ANCOVA with `pingouin` that looks at teaching evaluations between men and women (the categorical predictor), but adjusts for their beauty (the continuous covariate). Print the result. What does it tell you?\n" ] }, { "cell_type": "code", "execution_count": 13, "id": "dd07d46a-4774-4d96-bc93-0f6348da1299", "metadata": { "editable": true, "slideshow": { "slide_type": "" }, "tags": [ "hide-input" ] }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
SourceSSDFFp-uncnp2
0gender4.346745115.0554900.0001200.031692
1beauty6.243877121.6264440.0000040.044903
2Residual132.808865460NaNNaNNaN
\n", "
" ], "text/plain": [ " Source SS DF F p-unc np2\n", "0 gender 4.346745 1 15.055490 0.000120 0.031692\n", "1 beauty 6.243877 1 21.626444 0.000004 0.044903\n", "2 Residual 132.808865 460 NaN NaN NaN" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Your answer here\n", "# ANCOVA in pingouin\n", "pg.ancova(data=profs, dv='eval', between='gender', covar='beauty')" ] }, { "cell_type": "markdown", "id": "f451aa14-65aa-44b0-bce4-b6cb7f7a1f66", "metadata": {}, "source": [ "You should see that there are significant effects of both gender and beauty, but there's little information of use here. \n", "\n", "Fit a linear model that is equivalent to this ANCOVA, called `ancova_mod`. Print the summary." ] }, { "cell_type": "code", "execution_count": 14, "id": "2dac5a1f-0aeb-489e-aaf2-d59f67b7c76f", "metadata": { "editable": true, "slideshow": { "slide_type": "" }, "tags": [ "hide-input" ] }, "outputs": [ { "data": { "text/html": [ "\n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "
OLS Regression Results
Dep. Variable: eval R-squared: 0.066
Model: OLS Adj. R-squared: 0.062
No. Observations: 463 F-statistic: 16.33
Covariance Type: nonrobust Prob (F-statistic): 1.41e-07
\n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "
coef std err t P>|t| [0.025 0.975]
Intercept 3.8838 0.039 100.468 0.000 3.808 3.960
gender[T.male] 0.1978 0.051 3.880 0.000 0.098 0.298
beauty 0.1486 0.032 4.650 0.000 0.086 0.211


Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified." ], "text/latex": [ "\\begin{center}\n", "\\begin{tabular}{lclc}\n", "\\toprule\n", "\\textbf{Dep. Variable:} & eval & \\textbf{ R-squared: } & 0.066 \\\\\n", "\\textbf{Model:} & OLS & \\textbf{ Adj. R-squared: } & 0.062 \\\\\n", "\\textbf{No. Observations:} & 463 & \\textbf{ F-statistic: } & 16.33 \\\\\n", "\\textbf{Covariance Type:} & nonrobust & \\textbf{ Prob (F-statistic):} & 1.41e-07 \\\\\n", "\\bottomrule\n", "\\end{tabular}\n", "\\begin{tabular}{lcccccc}\n", " & \\textbf{coef} & \\textbf{std err} & \\textbf{t} & \\textbf{P$> |$t$|$} & \\textbf{[0.025} & \\textbf{0.975]} \\\\\n", "\\midrule\n", "\\textbf{Intercept} & 3.8838 & 0.039 & 100.468 & 0.000 & 3.808 & 3.960 \\\\\n", "\\textbf{gender[T.male]} & 0.1978 & 0.051 & 3.880 & 0.000 & 0.098 & 0.298 \\\\\n", "\\textbf{beauty} & 0.1486 & 0.032 & 4.650 & 0.000 & 0.086 & 0.211 \\\\\n", "\\bottomrule\n", "\\end{tabular}\n", "%\\caption{OLS Regression Results}\n", "\\end{center}\n", "\n", "Notes: \\newline\n", " [1] Standard Errors assume that the covariance matrix of the errors is correctly specified." ], "text/plain": [ "\n", "\"\"\"\n", " OLS Regression Results \n", "==============================================================================\n", "Dep. Variable: eval R-squared: 0.066\n", "Model: OLS Adj. R-squared: 0.062\n", "No. Observations: 463 F-statistic: 16.33\n", "Covariance Type: nonrobust Prob (F-statistic): 1.41e-07\n", "==================================================================================\n", " coef std err t P>|t| [0.025 0.975]\n", "----------------------------------------------------------------------------------\n", "Intercept 3.8838 0.039 100.468 0.000 3.808 3.960\n", "gender[T.male] 0.1978 0.051 3.880 0.000 0.098 0.298\n", "beauty 0.1486 0.032 4.650 0.000 0.086 0.211\n", "==================================================================================\n", "\n", "Notes:\n", "[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.\n", "\"\"\"" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Your answer here\n", "ancova_mod = smf.ols('eval ~ gender + beauty', data=profs).fit()\n", "ancova_mod.summary(slim=True)" ] }, { "cell_type": "markdown", "id": "42ec728f-3e19-4308-89f9-d1bed94dbcd1", "metadata": {}, "source": [ "Now make a prediction about teaching evaluations for females and males. As the variable we want to control for is in the model (beauty), we don't need to make any predictions for it." ] }, { "cell_type": "code", "execution_count": 15, "id": "e5767d2b-27f9-407c-8596-2de46f959801", "metadata": { "editable": true, "slideshow": { "slide_type": "" }, "tags": [ "hide-input" ] }, "outputs": [ { "data": { "text/html": [ "
\n", "shape: (1, 8)
termestimatestd_errorstatisticp_values_valueconf_lowconf_high
strf64f64f64f64f64f64f64
"Row 1 - Row 2"0.197810.050983.8801410.00010413.2256460.0978910.297729
" ], "text/plain": [ "shape: (1, 8)\n", "┌───────────────┬──────────┬───────────┬──────┬──────────┬──────┬────────┬───────┐\n", "│ Term ┆ Estimate ┆ Std.Error ┆ z ┆ P(>|z|) ┆ S ┆ 2.5% ┆ 97.5% │\n", "│ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- │\n", "│ str ┆ str ┆ str ┆ str ┆ str ┆ str ┆ str ┆ str │\n", "╞═══════════════╪══════════╪═══════════╪══════╪══════════╪══════╪════════╪═══════╡\n", "│ Row 1 - Row 2 ┆ 0.198 ┆ 0.051 ┆ 3.88 ┆ 0.000104 ┆ 13.2 ┆ 0.0979 ┆ 0.298 │\n", "└───────────────┴──────────┴───────────┴──────┴──────────┴──────┴────────┴───────┘\n", "\n", "Columns: term, estimate, std_error, statistic, p_value, s_value, conf_low, conf_high" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Your answer\n", "# Predictions and contrast\n", "me.predictions(ancova_mod, \n", " hypothesis='pairwise',\n", " newdata=me.datagrid(ancova_mod,\n", " gender=['male', 'female'])\n", " )" ] }, { "cell_type": "markdown", "id": "35bbe0f7-eb84-420c-9c31-f330fcd29063", "metadata": {}, "source": [ "Repeat the analysis without the beauty covariate. Is the difference smaller or larger with the effect of beauty removed?" ] }, { "cell_type": "code", "execution_count": 16, "id": "d58339e8-bd2c-4514-88bf-d2e382e24c14", "metadata": { "editable": true, "slideshow": { "slide_type": "" }, "tags": [ "hide-input" ] }, "outputs": [ { "data": { "text/html": [ "
\n", "shape: (1, 8)
termestimatestd_errorstatisticp_values_valueconf_lowconf_high
strf64f64f64f64f64f64f64
"Row 1 - Row 2"0.1680040.0516953.2499390.0011549.7587680.0666850.269324
" ], "text/plain": [ "shape: (1, 8)\n", "┌───────────────┬──────────┬───────────┬──────┬─────────┬──────┬────────┬───────┐\n", "│ Term ┆ Estimate ┆ Std.Error ┆ z ┆ P(>|z|) ┆ S ┆ 2.5% ┆ 97.5% │\n", "│ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- │\n", "│ str ┆ str ┆ str ┆ str ┆ str ┆ str ┆ str ┆ str │\n", "╞═══════════════╪══════════╪═══════════╪══════╪═════════╪══════╪════════╪═══════╡\n", "│ Row 1 - Row 2 ┆ 0.168 ┆ 0.0517 ┆ 3.25 ┆ 0.00115 ┆ 9.76 ┆ 0.0667 ┆ 0.269 │\n", "└───────────────┴──────────┴───────────┴──────┴─────────┴──────┴────────┴───────┘\n", "\n", "Columns: term, estimate, std_error, statistic, p_value, s_value, conf_low, conf_high" ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Your answer\n", "# T-test style model\n", "ancova_mod = smf.ols('eval ~ gender', data=profs).fit()\n", "\n", "# Predictions and contrast\n", "me.predictions(ancova_mod, \n", " hypothesis='pairwise',\n", " newdata=me.datagrid(ancova_mod,\n", " gender=['male', 'female'])\n", " )" ] }, { "cell_type": "markdown", "id": "53187ff3-129e-4454-846c-f3684e570af8", "metadata": {}, "source": [ "### f. Knowledge of linear models gets you out of trouble\n", "Following on from the last example, lets say we want to examine the interaction between gender and tenure status and control for beauty. Perhaps we wish to see whether our earlier ANOVA model stands up if we incorporate and control for beauty.\n", "\n", "First, try to fit one of these models in `pingouin`. Its another ANCOVA, but this time has two between factors." ] }, { "cell_type": "code", "execution_count": 17, "id": "6651ee2b-7edf-4569-a2b2-19395540440c", "metadata": { "editable": true, "slideshow": { "slide_type": "" }, "tags": [ "hide-input" ] }, "outputs": [], "source": [ "# Your answer here\n", "#pg.ancova(data=profs, dv='eval', between=['tenure', 'gender'], covar='beauty')" ] }, { "cell_type": "markdown", "id": "fcc7e531-bd48-4731-9d7c-ecc44b052536", "metadata": {}, "source": [ "If you did this correctly, you should see an error - the software doesn't support it!\n", "\n", "But we can easily fit a linear model to do this. Fit a model that has an interaction between gender and tenure, and has beauty as a predictor." ] }, { "cell_type": "code", "execution_count": 18, "id": "c9400fd1-5bec-4f6a-8f31-81f0b14de217", "metadata": { "editable": true, "slideshow": { "slide_type": "" }, "tags": [ "hide-input" ] }, "outputs": [ { "data": { "text/html": [ "\n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "
OLS Regression Results
Dep. Variable: eval R-squared: 0.104
Model: OLS Adj. R-squared: 0.096
No. Observations: 463 F-statistic: 13.23
Covariance Type: nonrobust Prob (F-statistic): 3.32e-10
\n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "
coef std err t P>|t| [0.025 0.975]
Intercept 3.8804 0.075 51.883 0.000 3.733 4.027
gender[T.male] 0.4890 0.105 4.650 0.000 0.282 0.696
tenure[T.yes] 0.0076 0.087 0.087 0.930 -0.164 0.179
gender[T.male]:tenure[T.yes] -0.3668 0.121 -3.027 0.003 -0.605 -0.129
beauty 0.1289 0.032 4.032 0.000 0.066 0.192


Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified." ], "text/latex": [ "\\begin{center}\n", "\\begin{tabular}{lclc}\n", "\\toprule\n", "\\textbf{Dep. Variable:} & eval & \\textbf{ R-squared: } & 0.104 \\\\\n", "\\textbf{Model:} & OLS & \\textbf{ Adj. R-squared: } & 0.096 \\\\\n", "\\textbf{No. Observations:} & 463 & \\textbf{ F-statistic: } & 13.23 \\\\\n", "\\textbf{Covariance Type:} & nonrobust & \\textbf{ Prob (F-statistic):} & 3.32e-10 \\\\\n", "\\bottomrule\n", "\\end{tabular}\n", "\\begin{tabular}{lcccccc}\n", " & \\textbf{coef} & \\textbf{std err} & \\textbf{t} & \\textbf{P$> |$t$|$} & \\textbf{[0.025} & \\textbf{0.975]} \\\\\n", "\\midrule\n", "\\textbf{Intercept} & 3.8804 & 0.075 & 51.883 & 0.000 & 3.733 & 4.027 \\\\\n", "\\textbf{gender[T.male]} & 0.4890 & 0.105 & 4.650 & 0.000 & 0.282 & 0.696 \\\\\n", "\\textbf{tenure[T.yes]} & 0.0076 & 0.087 & 0.087 & 0.930 & -0.164 & 0.179 \\\\\n", "\\textbf{gender[T.male]:tenure[T.yes]} & -0.3668 & 0.121 & -3.027 & 0.003 & -0.605 & -0.129 \\\\\n", "\\textbf{beauty} & 0.1289 & 0.032 & 4.032 & 0.000 & 0.066 & 0.192 \\\\\n", "\\bottomrule\n", "\\end{tabular}\n", "%\\caption{OLS Regression Results}\n", "\\end{center}\n", "\n", "Notes: \\newline\n", " [1] Standard Errors assume that the covariance matrix of the errors is correctly specified." ], "text/plain": [ "\n", "\"\"\"\n", " OLS Regression Results \n", "==============================================================================\n", "Dep. Variable: eval R-squared: 0.104\n", "Model: OLS Adj. R-squared: 0.096\n", "No. Observations: 463 F-statistic: 13.23\n", "Covariance Type: nonrobust Prob (F-statistic): 3.32e-10\n", "================================================================================================\n", " coef std err t P>|t| [0.025 0.975]\n", "------------------------------------------------------------------------------------------------\n", "Intercept 3.8804 0.075 51.883 0.000 3.733 4.027\n", "gender[T.male] 0.4890 0.105 4.650 0.000 0.282 0.696\n", "tenure[T.yes] 0.0076 0.087 0.087 0.930 -0.164 0.179\n", "gender[T.male]:tenure[T.yes] -0.3668 0.121 -3.027 0.003 -0.605 -0.129\n", "beauty 0.1289 0.032 4.032 0.000 0.066 0.192\n", "================================================================================================\n", "\n", "Notes:\n", "[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.\n", "\"\"\"" ] }, "execution_count": 18, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Your answer here\n", "# More complex ANCOVA\n", "ancova2 = smf.ols('eval ~ beauty + gender * tenure', data=profs).fit()\n", "ancova2.summary(slim=True)" ] }, { "cell_type": "markdown", "id": "b201bade-ae5e-48ba-a369-87af55f8fd05", "metadata": {}, "source": [ "Once you have this model, use it to make predictions about gender and tenure as before, and work out the interaction effects. Are they the same as before?" ] }, { "cell_type": "code", "execution_count": 19, "id": "af123534-3d80-42b2-b298-86ca46d7aff9", "metadata": { "editable": true, "slideshow": { "slide_type": "" }, "tags": [ "hide-input" ] }, "outputs": [ { "data": { "text/html": [ "
\n", "shape: (2, 10)
gendertermcontrastestimatestd_errorstatisticp_values_valueconf_lowconf_high
strstrstrf64f64f64f64f64f64f64
"female""tenure""mean(yes) - mean(no)"0.0076260.0873340.0873150.9304210.104044-0.1635460.178798
"male""tenure""mean(yes) - mean(no)"-0.3591430.082324-4.3625460.00001316.247228-0.520495-0.197791
" ], "text/plain": [ "shape: (2, 10)\n", "┌────────┬────────┬──────────────────────┬──────────┬───┬──────────┬───────┬────────┬────────┐\n", "│ gender ┆ Term ┆ Contrast ┆ Estimate ┆ … ┆ P(>|z|) ┆ S ┆ 2.5% ┆ 97.5% │\n", "│ --- ┆ --- ┆ --- ┆ --- ┆ ┆ --- ┆ --- ┆ --- ┆ --- │\n", "│ str ┆ str ┆ str ┆ str ┆ ┆ str ┆ str ┆ str ┆ str │\n", "╞════════╪════════╪══════════════════════╪══════════╪═══╪══════════╪═══════╪════════╪════════╡\n", "│ female ┆ tenure ┆ mean(yes) - mean(no) ┆ 0.00763 ┆ … ┆ 0.93 ┆ 0.104 ┆ -0.164 ┆ 0.179 │\n", "│ male ┆ tenure ┆ mean(yes) - mean(no) ┆ -0.359 ┆ … ┆ 1.29e-05 ┆ 16.2 ┆ -0.52 ┆ -0.198 │\n", "└────────┴────────┴──────────────────────┴──────────┴───┴──────────┴───────┴────────┴────────┘\n", "\n", "Columns: gender, term, contrast, estimate, std_error, statistic, p_value, s_value, conf_low, conf_high" ] }, "execution_count": 19, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Your answer here\n", "# I will use slopes\n", "me.slopes(ancova2, newdata=anova_predmat, variables='tenure', by='gender')" ] }, { "cell_type": "markdown", "id": "de14194d-1311-42a7-85bc-9e8f0e1e229d", "metadata": {}, "source": [ "Plot it the predictions and check them against the ANOVA predictions." ] }, { "cell_type": "code", "execution_count": 20, "id": "d0bbe9dc-ab5b-4160-9cd6-a37db50e70af", "metadata": { "editable": true, "slideshow": { "slide_type": "" }, "tags": [ "hide-input" ] }, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 20, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjIAAAGsCAYAAADHSE33AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAABIvElEQVR4nO3dd3wUdeL/8dfuJptCCBAIPaGloSAtiIK00MGKqOcpp4BYkCIgTe88j7uDCAeoIMihyOnZ24kaioCASkfQiCS0AEmABBJKCskmu/P7I1/yEwXJQpLJJu/n43GPI7uzn3nvBnbezsxnxmIYhoGIiIiIB7KaHUBERETkaqnIiIiIiMdSkRERERGPpSIjIiIiHktFRkRERDyWioyIiIh4LBUZERER8VheZgcoay6Xi8LCQqxWKxaLxew4IiIiUgKGYeByufDy8sJqvfx+l0pfZAoLC4mPjzc7hoiIiFyF1q1bY7fbL/t8pS8yF1pc69atsdlspTau0+kkPj6+1McVERHxFGW5Lbww9u/tjYEqUGQuHE6y2WxlUjjKalwRERFPUZbbwiudFqKTfUVERMRjqciIiIiIx1KREREREY9V6c+RKQmXy4XD4XDrNU6nE4C8vDydI1MCdrv9iidsiYiIuKvKFxmHw0FSUhIul8ut1xmGgZeXF0eOHNH1aUrAarXSrFmz351CJyIi4q4qXWQMw+D48ePYbDZCQkLc2mNgGAbnz5/Hz89PReYKXC4Xx44d4/jx44SGhurzEhGRUlOli0xhYSG5ubk0bNgQf39/t1574YqDvr6+2jCXQHBwMMeOHaOwsBBvb2+z44iISCVRpU9auHCeiw53lL0Ln/GFz1xERKQ0VOkic4H2qJQ9fcYiIlIWVGRERETEY6nIiIiIiMdSkalEtm7dSmRkpNkxREREyo2KjIiIiFwVl8ugwGmYmqFKT78uLz///DN///vfSUhIIDQ0lP79+/Phhx+ybt06Nm3axNy5czl8+DD16tXjscce4/bbbwdg6tSp2O120tPT2bp1K0FBQTz00EP86U9/AiA9PZ3nnnuObdu2UatWLQYNGnTReo8ePcqMGTPYtWsX/v7+3H777Tz55JPY7XY++eQT/vvf/1KzZk1+/PFH/vrXv3LbbbeV+2cjIiKep9Dp4qOdKcz9ah8FBQV8d4MTf5Oucq89MmUsOzubRx55hJtuuomtW7cya9YsPvjgAwASEhJ44oknePTRR9m6dSt///vfmTFjBt98803x6z/55BOGDh3K9u3bGTlyJLGxsaSlpQEwfvx4vLy82LhxI//973/ZuHFj8etyc3N5+OGHCQ8PZ+PGjbzzzjts2rSJ+fPnFy+zZ88ebrvtNjZt2kSfPn3K6RMRERFPZRgGa/emMeClb5j6STzpWfkE+ljBxJmpKjJlbN26ddhsNsaMGYPdbicyMpJHHnkEgPfee49evXrRt29fbDYb7du359577+Xtt98ufn2nTp3o0qULXl5e3H333TidTo4ePUpqaio7duzg6aefJiAggAYNGjB69Oji161fvx6Hw8GECRPw8fGhQYMGjBs37qKxvb29ueOOO7Db7fj6+pbfhyIiIh7nh+Qz3L9kCyP+s4P96dnU9PfmzwOjeKFXbXy8zKsTOrRUxk6cOEHDhg0vuv1BSEgIAKmpqWzZsoXo6Oji55xOJ6GhocU/BwcHF//5whVxXS5X8V6Zhg0bFj//y9elpqaSmZlJx44dix8zDIOCggIyMjKKx9aNHEVE5Pcczchl9upEPv/hGAB2LyvDuzTjiR4tCLBb2b37jKn5VGTKWMOGDTl27BiGYRRfFO7YsaK/DPXr1+euu+5i+vTpxcunp6djGFc+cap+/foAJCcn06JFC6CoNP3y+dDQUFauXFn8WHZ2NhkZGQQFBQG6SJ2IiFze6RwH89cd4K0thylwGlgsMLhdYyb0jaBRTT+gYlytXf85XsZiYmIwDINXX30Vh8PBoUOHeP311wEYMmQIX3zxBd9++y0ul4vDhw/z4IMPsnTp0iuO27BhQ2655RZmzpzJ2bNnOXnyJAsWLCh+vmfPnuTk5PDaa6/hcDg4d+4cU6ZMYfz48SowIiJyWXkFThatP0i32V+z9LskCpwGXcPr8MWYW5hzb5viElNRqMiUMX9/fxYuXMjatWu58cYbmTBhAl26dMHb25s2bdowd+5c5s6dS8eOHXnwwQeJiYlh4sSJJRp7zpw5VK9enZ49e3L33XfTuXPn4ucCAgJYtmwZW7dupVu3bvTu3Rur1cqiRYvK6q2KiIgHc7oMPtqZQs9/reeFlQlk5RXSskEgbw6/kbdGdOL6hjXMjnhJFqMkxzE8mNPpZPfu3bRt2xbbr6aG5eXlkZSURLNmzdw+2dUwDHJzc/H39//dPRynT5/m0KFDdOjQofixt956iy+//JL33nvPvTfjwa7lsxYRkbK1Yd9JZsbtJeFEFgANa/jydL9I7mzbCKv18tu439vGXquSjq1zZMqY0+nkoYce4pVXXqF79+6kpKTwzjvvcOedd5odTUREqrifUs/ywsoEvtl/CoDqvl6M7hnGQ52b4uttznVh3KUiU8bq1KnDiy++yL/+9S+eeuopAgMDueuuuxgxYoTZ0UREpIpKOZ3L3NX7+HR3KoYB3jYLf7q5KaN7hlGrmt3seG5RkSkHvXv3pnfv3mbHEBGRKu5sbgEL1x/gjU2HcRS6ALi9TUMm9YskJMjf5HRXR0VGRESkkssvdPLW5iPMX3eAs+cLALipeRDPDGzJDY1rmhvuGqnIiIiIVFIul8HnPx5j9qpEUk6fByCiXgDTBrSkR2Rwpbgch4qMiIhIJbTp4ClmxiUQn3oWgHqBPkzsE8ndHRpj+52ZSJ5GRUZERKQSSTyRReyKvXydeBKAAB8vHu/enOG3NMPfXvk2+5XvHYmIiFRBJ87mMferRD7amYLLAC+rhQc6hTKmVzh1AnzMjldmVGREREQ82Lm8AhZvOMjr3yaRV1A0E2lg6/pM6hdFszrVTE5X9lRkqriYmBhGjx7N4MGDzY4iIiJucBS6eGfrEV5ed4DMHAcA0U1q8cyglrQPrWVyuvKjIvMrhmFwvuDKd/M0DINchxO8Cq/5rG8/b1ulOHNcRETKnmEYrPjpBLNWJnA4IxeA5sHVmNo/ij7X1aty2xMVmV8wDIMhr25m55HT5bre6Ca1+PDxm0v8ly8lJYVevXrxwgsv8NJLL3H69GkGDBjA3XffzfTp00lOTuaGG25g3rx52O12YmNj2bZtG+np6VSvXp0HHniAxx9//DfjOhwOFi1axPLly8nKyqJNmzb8+c9/pkmTJqX9lkVE5CpsS8pkRtxediefAaBOgA/j+4RzX3QIXraqeR9oFZlf8aQeu2HDBuLi4khOTubOO+/k559/ZsmSJXh7e/OHP/yBd955h1OnTpGSksJHH31E9erVWb16NWPHjmXAgAG/KSjz5s1jy5YtLFu2jLp167JkyRKGDx9OXFwcPj6V90QxEZGK7kB6Ni+sTOCrn9MA8LfbGNm1OY92a041n6q9Ka/a7/5XLBYLHz5+c8kPLeWex9/fz7RDS8OHD8fPz4+IiAiCg4O56667qFevHgBt27YlNTWVp59+GpvNRkBAACdOnCguJOnp6RcVGcMweO+993j55ZcJCQkB4Mknn+SDDz5g/fr19OvX75reo4iIuC89K48X1+zn/e3JOF0GNquF+zqG8FSvcOoG+podr0JQkfkVi8VSonn2hmFAoQ1/u5dpxyNr1qxZ/GebzUZgYGDxz1arFcMwyMjI4J///Cc///wzjRs3plWrVgC4XK6LxsrMzCQ3N5dx48Zhtf7/3ZMFBQWkpqaW7RsREZGL5OQX8u+Nh1jyzaGi8zGBPtfVY0r/SMLqVjc5XcWiIuPBSlKgxo0bR0xMDK+//jpeXl6cPn2aDz744DfL1apVCx8fH5YuXUrbtm2LHz906FDxXh4RESlbhU4X7+9IZt5X+zmVnQ9A25CaPDOwJTc2CzI5XcVUNc8MqkKysrLw9fXFZrORmZnJP/7xD6BoT8svWa1WhgwZwpw5czhx4gQul4tPP/2UW2+9lSNHjpgRXUSkyjAMg9V7TtD3xY08++lPnMrOp0ltfxY+0J5PR3VWifkd2iNTyc2cOZMZM2awdOlSatSowcCBA7nuuuvYt28ft9xyy0XLTpkyhfnz5/PHP/6RM2fOEBISwssvv8x1111nUnoRkcrv+6OnmRm3l+2Hi2bMBlWzMzYmjD92aoLdS/sbrsRiGIZhdoiy5HQ62b17N23btsVms130XF5eHklJSTRr1gxfX/dOmio62TcXf3//Kjdn/2pcy2ctIlIZJZ3KYfaqBOLiTwDg42Xlka7NeKx7CwJ9vU1OVzK/t40tr7G1R0ZERKQcZWTn8/La/by99SiFLgOLBe7p0JjxfSJoUMPP7HgeR0VGRESkHJx3OFn6XRKL1h8kO78QgJ6RwUwZEEVU/cArvFouR0VGRESkDDldBh/vTGHOV4mknSuaidSqUSDPDGhJ57A6JqfzfCoyIiIiZcAwDNYnnmTmir3sS8sGoFFNPyb3j+S2Gxpiter8ytKgIiMiIlLKfkw5w8y4BDYfygCghp83Y2LCGHpzE3y8Svek2KpORUZERKSUJGfmMntVIst/OAaA3cvKsM5NGdUjjBr+njETydOoyIiIiFyj0zkOFnx9gLc2H8HhLLoFzOB2jZjQN4LGtfxNTle5qciIiIhcpbwCJ//ZdJgFXx8gK69oJlKXsNpMG9CSVo1qmJyualCRERERcZPLZfC/3anMWb2P1DPnAYiqX51pA1vSLbyOLpRajlRkRERE3PDN/pPMjEvg5+PnAGhQw5eJfSO5q10jbJqJVO50EwcPFBcXx80330yHDh34+uuvy2WdKSkpREZGkpKSUi7rExGpaH4+do6hr29l6Ovb+Pn4Oar7eDGlfxRfP92DIR0aq8SYRHtkfs0woCC3ZMs5zoOXAde6C9Hb360xPvzwQwYNGsSf//zna1uviIhc0bEz5/nX6kQ+3ZWKYYC3zcLQm5oyOiaMoGp2s+NVeSoyv2QYsLQfJG+94qIWoFpprTfkJhi+skRlZsiQIezZs4ft27ezfv16li5dyowZM9i1axf+/v7cfvvtPPnkk9jtdj755BM++ugj2rRpw8cff4zVauXJJ5/Ex8eHRYsWce7cOQYNGsT06dMBOHjwILNmzSIxMZHMzEwaN27MpEmT6Nmz529ynDp1itjYWDZv3ozFYiEmJobJkycTEBBQWp+KiIipzp4vYNH6gyz9LglHYdFMpNvaNGRS30hCa2smUkWhQ0u/UbF3DX700UdER0fz2GOPsXz5ch5++GHCw8PZuHEj77zzDps2bWL+/PnFy+/cuZN69eqxZcsWxo4dy8yZM9m6dStxcXEsW7aMjz76iO3btwMwZswYIiIi+Oqrr9ixYwe33HILzz///G8yuFwuRo0ahdVqZdWqVXz++eekp6fz3HPPldfHICJSZvILnbz+bRLdZ3/NqxsO4ih00alZEJ892YX597dTialgtEfmlyyWoj0jJTi0ZBgGubnn8ff3u/az0908tHTB+vXrcTgcTJgwAYvFQoMGDRg3bhxjx45l4sSJAPj7+/PQQw9hsVi45ZZbcDqdjBgxAj8/P1q3bk3dunVJTU2lY8eOLF68mHr16mEYBqmpqQQGBpKWlvab9f7000/s2bOHN954g2rVivZLTZkyhf79+/OXv/yFWrVqXdvnISJiApfL4Iv448xelUByZtFMpPC6AUwdEEVMVF3NRKqgVGR+zWIBewkOGhkGFFrAfnUlpDSkpqaSmZlJx44dfxHLoKCggIyMosti16xZs/gfn9VatAMuMPD/32XVarXichXtMk1ISGDUqFGcPHmSFi1aEBQUhGEYv1lvSkoKTqeT7t27X/S43W4nOTlZRUZEPM7mgxnMXLGXH1POAlC3ug8T+kQwpENjvGw6eFGRqch4sPr16xMaGsrKlSuLH8vOziYjI4OgoCCAEv8XRFpaGuPGjWPBggXExMQAsGrVKlavXn3J9fr6+rJ161ZstqJ7hjgcDpKTk2nSpMm1vi0RkXKzLy2LF1YksDYhHYBqdhuPd2/BiK7N8LdrE+kJVDM9WM+ePcnJyeG1117D4XBw7tw5pkyZwvjx493eBZqTk4PT6cTPzw+AAwcO8MorrwBFJeWXbrjhBpo0aUJsbCw5OTnk5eUxY8YMHn74YZxOZ+m8ORGRMpR2Lo+pH/9I/xc3sjYhHS+rhT/d3IQNk3syple4SowHMbXIOJ1Ohg4dytSpUy/5vMvlYv78+XTv3p127dpx2223ERcXV84pK66AgACWLVvG1q1b6datG71798ZqtbJo0SK3x2revDmTJ09m0qRJdOjQgXHjxnH33Xfj7e3Nvn37LlrWy8uLxYsXc+rUKfr27cstt9zC0aNHeeONN/Dx8SmttyciUuqy8gqYszqR7rO/5r3tybgMGNCqPqvHd2P6Ha2oE6DvME9jMS51EkQ5eemll3j11Ve54447iI2N/c3zb731FsuWLeONN94gNDSUr7/+mlGjRrFq1SpCQ0NLtA6n08nu3btp27Zt8WGQC/Ly8khKSqJZs2b4+vq6lb3oZN9c/P39dQJYCVzLZy0icq0KnC7e3XaUl9bsJyOnaC9zhya1eGZgFB2aBJmcznP93ja2vMY2bd/Z5s2bWb16NX379r3sMg888AB33303/v7+OBwOMjMz8fPz04ZQRERKxDAMVv50glmrEkk6lQNA8zrVmNw/in7X19N/iFYCphSZjIwMnn32WRYuXMiyZcsuu5zVasXf359vv/2WkSNHYhgG06ZNo27dum6v81LnbjidTgzDKP6fOy4sb+IOLY9y4TN2Op06j0ZEysWOI6eJXZnIrqNnAKhdzc64XmHcG90Yb9v/n7EpV+/C93lZfK+XdMxyLzIul4tJkyYxbNgwoqKiSvSaG2+8kfj4eLZv386oUaMIDg5m4MCBbq03Pj7+ko97eXlx/vz5q/4Lff78+at6XVWTn59PQUEBCQkJZkcRkUouNauQt+Oz2JqaD4CPzcLtkf7cEVENP+9M9sRnmpyw8rncNrY8lHuRWbx4MXa7naFDh5b4NXZ70b0sbr75Zu644w4+//xzt4tM69atL3mOzJEjR67qcJVhGJw/fx4/v1K4IF4VYLVa8fb2JiwsTIcGRaRMnMrO5+W1B3hvRxpOl4HVAvd0aMxTvcKoG6jvnbLgdDqJj4+/5Da2tMa+knIvMp999hnp6elER0cDRWUCYM2aNezYseOiZS+cAPzLWU0Oh4OaNWu6vV6bzfabD9lmsxWXkKstIxaLRUWmhCwWyyV/DyIi1yInv5DXvkni3xsPkuMoOhzRu2VdpvSPIrxedZPTVQ1mfreXe5H55cXb4P+XlEvNWoqOjubpp5+mV69edOjQgfXr1xMXF8fSpUtLJcsvL+Z24fopUjYuXItGJUZESkuh08UHO1KYt2YfJ7OKDiO1aVyDaQNbclPz2iank/JS4a74065dO/72t79x++2307t3b/785z/z5z//mVOnTtG0aVPmz59P+/btS2VdXl5e+Pv7c/LkSby9vYsv4V8ShmGQn5+P1WrVHpkrcLlcnDx5En9/f7y8KtxfORHxMIZhsGZvOrEr9nLwZNFMpNAgfyb3j2RQ6wb6Tq5iTL2OTHm40jx0h8NBUlKS2yf7Xrinkbe3t/7RlIDVaqVZs2bF5zuJiFyNXUdPMzMugW2Hi07YreXvzdhe4TzQqQl2L12svrxV6evIVBR2u53w8PDfXIb/SpxOJwkJCYSFhelwSQnY7Xa39niJiPzSkYwcZq1M5Mv44wD4eFkZfkszHu/eghp+3ianEzNV+SIDRXsL3J1Jc2F+u6+vr4qMiEgZycxx8PLa/by99QgFTgOLBe5u35gJfSJoWFPnNoqKjIiIVEDnHU6WfpfEq+sPkpVfCED3iGCmDoiiZYNAk9NJRaIiIyIiFYbTZfDx9ynMXb2PE+eKLs9xfcNApg1oyS3hdUxOJxWRioyIiJjOMAw27DtJ7IoEEk5kAdCoph+T+kVye5uGWK2aVCGXpiIjIiKm+in1LDNX7OW7AxkABPp6MSYmnKE3N8HXW+cgyu9TkREREVMkZ+YyZ3Ui/9t9DAC7zcpDnZvwZM8wavrrUg1SMioyIiJSrs7kOnjl6wP8Z9MRHM6ia3jd2bYhE/tGEhLkb3I68TQqMiIiUi7yCpy8ufkwC9Yd4Fxe0Uykzi1qM21AS1o3rmFyOvFUKjIiIlKmXC6D5T8cY/aqRFLPnAcgqn51pg6IontEsK6OLtdERUZERMrMdwdOMSNuL3uOnQOgfqAvE/tGMLh9Y2yaiSSlQEVGRERK3d7j54hdkcCGfScBCPDx4okeLRjepRl+ds1EktKjIiMiIqXm+NnzzFm9j4+/T8EwwMtq4cGbmjAmJozaAT5mx5NKSEVGRESu2bm8AhatP8jSb5PILyyaiTTohgZM6htJ0zrVTE4nlZmKjIiIXDVHoYu3tx7h5bX7OZ1bAMCNTYOYNjCKdqG1TE4nVYGKjIiIuM0wDL6MP86slYkczcwFIKxuAFP7R9GrZV3NRJJyoyIjIiJu2Xoogxlxe/kh5SwAwdV9GN87gnujG+Nls5qcTqoaFRkRESmR/WlZvLAygTV70wHwt9t4rFsLHunajGo+2pyIOfQ3T0REflf6uTzmrdnH+9uTcRlgs1q4/8YQxvWKILi6ZiKJuVRkRETkkrLzC/n3hoMs+SaJ8wVOAPpdX4/J/aNoERxgcjqRIioyIiJykQKni/e2J/PSmn2cynYA0D60Js8MbEl00yCT04lcTEVGRESAoplIq/akMWtlAodO5QDQtLY/U/pH0b9Vfc1EkgpJRUZERNh5JJMZcQnsPHIagNrV7IzrHc79N4birZlIUoGpyIiIVGGHTmYza2UiK/ecAMDX28rIrs15tFtzqvt6m5xO5MpUZEREqqBT2fm8tGY/72w7itNlYLXAvdEhjO8TQb1AX7PjiZSYioyISBWS6yjk9W+SeHXDQXIcRTORekXVZcqAKCLqVTc5nYj7VGRERKqAQqeLj3amMPerfaRn5QNwQ+MaTB0QRecWdUxOJ3L1VGRERCoxwzBYl5BO7IoE9qdnAxAS5MekflHc2roBVqtmIolnU5EREamkfkg+w4y4vWxNygSgpr83Y2LCefCmUHy8bCanEykdKjIiIpXM0YxcZq9O5PMfjgFg97IyvEsznujRghp+mokklYuKjIhIJXE6x8H8dQd4a8thCpwGFgsMbteYCX0jaFTTz+x4ImVCRUZExMPlFTh547vDLFx/gKy8QgC6RQQztX8U1zUMNDmdSNlSkRER8VBOl8Gnu1KZszqR42fzAGjZIJBnBkbRNTzY5HQi5UNFRkTEA23Yd5KZcXtJOJEFQMMavjzdL5I72zbSTCSpUlRkREQ8yE+pZ3lhZQLf7D8FQHVfL0b3DOOhzk3x9dZMJKl6VGRERDxAyulc5q7ex6e7UzEMsNus/OnmJjzZM4xa1exmxxMxjYqMiEgFdja3gIXrD/DGpsM4Cl0A3N6mIZP6RRIS5G9yOhHzqciIiFRA+YVO3tp8hPnrDnD2fAEANzUP4pmBLbmhcU1zw4lUICoyIiIViMtl8PmPx5i9KpGU0+cBiKgXwLQBLekRGYzFohN5RX5JRUZEpILYdOAUM1bs5afUcwDUC/RhYp9I7u7QGJtmIolckoqMiIjJEk6cI3ZFAusTTwIQ4OPFEz1aMLxLM/zsmokk8ntUZERETHLibB5zv0rko50puAzwslp4oFMoY3qFUyfAx+x4Ih5BRUZEpJydyytg8YaDvP5tEnkFRTORBrauz6R+UTSrU83kdCKeRUVGRKScOApdvLP1CC+vO0BmjgOAjk1rMW1gS9qH1jI5nYhnUpERESljhmEQF3+CWasSOJKRC0Dz4GpM7R9Fn+vqaSaSyDVQkRERKUPbkjKZEbeX3clnAKgT4MP4PuHcFx2Cl81qbjiRSkBFRkSkDBxIz+aFlQl89XMaAP52GyO7NufRbs2p5qOvXpHSon9NIiKlKD0rjxfX7Of97ck4XQY2q4X7OobwVK9w6gb6mh1PpNJRkRERKQU5+YX8e+MhlnxziFyHE4A+19VjSv9IwupWNzmdSOWlIiMicg0KnS7e257Mi2v2cyo7H4C2ITV5ZmBLbmwWZHI6kcpPRUZE5CoYhsFXP6cRuzKBQydzAGhS258p/aMY0Kq+ZiKJlBMVGRERN31/9DQz4/ay/fBpAIKq2RnXK5z7bwzF7qWZSCLlSUVGRKSEkk7lMHtVAnHxJwDw9bbyyC3Neax7c6r7epucTqRqUpEREbmCjOx8Xl67n7e3HqXQZWCxwD0dGjO+TwQNaviZHU+kSlORERG5jPMOJ0u/S2LR+oNk5xcC0DMymCkDooiqH2hyOhEBFRkRkd9wugw+3pnCnK8SSTtXNBOpVaNAnhnQks5hdUxOJyK/pCIjIvJ/DMNgfeJJZq7Yy760bAAa1/JjUr9IbruhIVarZiKJVDQqMiIiwI8pZ5gZl8DmQxkA1PDzZkxMGENvboKPl83kdCJyOSoyIlKlJWfmMntVIst/OAaA3cvKsM5NGdUjjBr+mokkUtGZWmScTicPP/wwjRo1IjY29pLLvPvuuyxbtoz09HTq1q3Ln/70Jx544IFyTioilc3pHAcLvj7AW5uP4HC6sFjgrraNmNA3gsa1/M2OJyIlZGqRWbBgATt27KBRo0aXfH7NmjXMnTuXJUuW0KZNG3bv3s2jjz5KnTp16NevXzmnFZHKIK/AybJNh3nl6wNk5RXNRLolrA5TB0TRqlENk9OJiLtMKzKbN29m9erV9O3b97LLpKWlMXLkSNq2bQtAu3bt6NSpE9u3b3e7yDidzmuJe9nxSntcESkbLpfBZz8cY85X+zl+Ng+AqPrVmdo/kq7hRTOR9O9ZxD1luS0s6ZimFJmMjAyeffZZFi5cyLJlyy673K8PIWVkZLB9+3amTZvm9jrj4+Pdfo2Z44pI6fkhLZ+3fswi6UzRHpjaflbub1Wdbk18seWksHt3iskJRTybmdvCci8yLpeLSZMmMWzYMKKiokr8upMnT/LYY4/RqlUrbr31VrfX27p1a2y20pt54HQ6iY+PL/VxRaT07D1+jhdWJvLNgaJ7IgX4eDGqR3MeurkJvt76dytyrcpyW3hh7Csp9yKzePFi7HY7Q4cOLfFrdu/ezbhx44iOjmbmzJl4ebkf22azlUnhKKtxReTqpZ45z5zViXy6KxXDAG+bhaE3NWV0TBhB1exmxxOpdMzcFpZ7kfnss89IT08nOjoagLy8omPVa9asYceOHb9Z/qOPPuIf//gHY8eOZfjw4eWaVUQ8y9nzBSxcf4A3vjuMo9AFwG1tGjKpbyShtTUTSaQyKvcis3Llyot+njp1KsAlp1+vWrWK559/nkWLFtG1a9dyyScinie/0Ml/txxl/rr9nMktAKBTsyCeGdiSNiE1zQ0nImWqwl0Qr127dvztb3/j9ttvZ8GCBTidTsaOHXvRMrfddhvTp083KaGIVBQul8EX8ceZvSqB5MzzAITXDWDqgChioupiseiWAiKVnelF5td7Ynbt2lX8588//7y844iIh9h8MIOZK/byY8pZAOpW92FCnwiGdGiMl81qcjoRKS+mFxkREXfsS8sidkUC6xLSAahmt/F49xaM6NoMf7u+0kSqGv2rFxGPkHYuj7mr9/HhzmRcBnhZLfyxUyhje4VTJ8DH7HgiYhIVGRGp0LLyCvj3xkMs+eYQeQVFM5EGtKrPpH6RNA8OMDmdiJhNRUZEKqQCp4t3tx3lpTX7ychxANChSS2eGRhFhyZBJqcTkYpCRUZEKhTDMFj50wlmrUok6VQOAM3rVGNy/yj6XV9PM5FE5CIqMiJSYew4nMk/4/ay6+gZAOoE2BnXO4I/dAzBWzORROQSVGRExHQHT2Yza2UCq/akAeDnbWNkt+Y82q05AT76mhKRy9M3hIiY5mRWPi+t3ce725JxugysFrivYyjje4dTN9DX7Hgi4gFUZESk3OXkF/LaN0ks3niQXIcTgN4t6zKlfxTh9aqbnE5EPImKjIiUm0Kniw92pDBvzT5OZuUD0KZxDaYNbMlNzWubnE5EPJGKjIiUOcMwWLM3ndgVezl4smgmUmiQP5P7RzKodQPNRBKRq6YiIyJlatfR08yMS2Db4UwAavl7M7ZXOA90aoLdSzORROTaqMiISJk4fCqH2asS+TL+OAA+XlZG3NKMx3u0INDX2+R0IlJZqMiISKnKzHHw8tr9vL31CAVOA4sF7m7fmIl9I2hQw8/seCJSyajIiEipOO9wsvS7JF5df5Cs/EIAukcEM3VAFC0bBJqcTkQqKxUZEbkmTpfBx9+nMHf1Pk6cywPg+oaBTBvQklvC65icTkQqOxUZEbkqhmGwft9JYuMSSEzLAqBRTT8m9Yvk9jYNsVo1E0lEyp6KjIi47afUs8yI28umgxkABPp6MSYmnKE3N8HX22ZyOhGpSlRkRKTEkjNzmbM6kf/tPgaA3Wbloc5NeLJnGDX97SanE5GqSEVGRK7oTK6DV74+wH82HcHhdAFwZ9uGTOwbSUiQv8npRKQqU5ERkcvKK3Dy5ubDLFh3gHN5RTOROreozTMDW9KqUQ2T04mIqMiIyCW4XAaf/ZDKv1btI/XMeQCi6ldn6oAoukcE65YCIlJhXFWR+e6773jrrbdIT09n8eLFLF26lIkTJ+LlpV4k4um+O3CKGXF72XPsHAD1A32Z2DeCwe0bY9NMJBGpYNxuHp9//jkzZ87knnvuYfv27QCsW7cOi8XC5MmTSz2giJSPvcfPEbsigQ37TgJQ3ceLJ3q2YFjnZvjZNRNJRComt+/Y9u9//5uFCxcyfvx4rFYrwcHBLF68mC+++KIs8olIGTt25jxPf/gDA1/+hg37TuJtszCsS1M2TO7JqB5hKjEiUqG5vUfmxIkTtGnTBqD4OHmTJk3Izc0t3WQiUqbO5RWwaP1Bln6bRH5h0UykQTc0YHK/SJrUrmZyOhGRknG7yDRt2pS1a9fSu3fv4sc2bdpEkyZNSjWYiJQNR6GLt7ce4eW1+zmdWwDAjU2DmDYwinahtUxOJyLiHreLzPjx4xk1ahS9evUiPz+f559/ni+++II5c+aURT4RKSWGYfBl/HFmrUzkaGbRHtSwugFM7R9Fr5Z1NRNJRDyS20Wmc+fOvPfee7z//vt06tQJl8vF0qVLueGGG8oin4iUgi2HMpgZt5cfUs4CEFzdhwl9IrinQ2O8bG6fKiciUmG4XWRef/11RowYwV//+teLHn/xxRd56qmnSiuXiJSC/WlZvLAygTV70wHwt9t4rFsLRnZrhr9dl0sQEc9Xom+yzMxMDh48CMD8+fNp06YNhmEUP5+VlcV//vMfFRmRCiL9XB7z1uzj/e3JuAywWS3cf2MI43pFEFzdx+x4IiKlpkRFxm63M3bsWE6fPg3Agw8++Jvn77vvvtJPJyJuyc4v5N8bDrLkmyTOFzgB6Hd9PSb3j6JFcIDJ6URESl+JikxAQACbN28GoH///qxcubJMQ4mIewqcLt7bdpSX1u7nVLYDgPahNXlmYEuimwaZnE5EpOy4fZD8ciUmMzOToCB9YYqUJ8MwWLUnjVkrEzh0KgeAZnWqMaV/JP2ur6+ZSCJS6bldZH788UdmzZpFWloaLlfRRbQKCgrIzMzkp59+KvWAInJpO49kMiMugZ1Hig751q5mZ1zvcO6/MRRvzUQSkSrC7SIzffp0QkJCCA8PJzk5mS5duvDmm28yceLEssgnIr9y6GQ2s1YmsnLPCQB8va2M7NqcR7s1p7qvt8npRETKl9tFZv/+/fz3v/8lJSWFf/7znwwbNox27doxffp0hg0bVhYZRQQ4mZXPy2v38862ozhdBlYL3Bsdwvg+EdQL9DU7noiIKdwuMoGBgfj6+hISEsL+/fsBaNu2LampqaUeTkQg11HIa98ksXjDQXIcRTORekXVZcqAKCLqVTc5nYiIudwuMs2bN+fdd9/l/vvvx9/fn71792K323VSoUgpK3S6+GhnCnO/2kd6Vj4ANzSuwdQBUXRuUcfkdCIiFYPbRWbcuHE88cQTdOnShREjRnDvvfdis9m4//77yyKfSJVjGAbrEtKJXZHA/vRsAEKC/JjUL4pbWzfAatV/NIiIXOB2kWnfvj0bN27E29ub++67j5YtW5KVlUWXLl3KIp9IlfJD8hlmxO1la1ImADX9vRkTE86DN4Xi42UzOZ2ISMVzVTdbyczMJDU1tfg2BXa7ne3bt9OxY8dSDSdSVRzJyGH2qkS++PE4AHYvK8O7NOOJHi2o4aeZSCIil+N2kVm0aBEvvfTSbx63WCzs3bu3VEKJVBWncxy8vG4//91yhAKngcUCg9s1ZkLfCBrV9DM7nohIhed2kVm2bBmvvPIKMTExOsFX5CrlFTh547vDLFx/gKy8QgC6RQQztX8U1zUMNDmdiIjncLvIeHl50aNHD5UYkavgdBl8uiuVOasTOX42D4DrGgQybWAUXcODTU4nIuJ53C4yDzzwAPPmzePxxx8nIEB30xUpCcMw2Lj/FDPj9pJwIguAhjV8ebpfJHe2baSZSCIiV+mqriMzceJEXn/99d88p3NkRH7rp9SzxK5I4NsDpwCo7uvF6J5hPNS5Kb7emokkInIt3C4ysbGxDB8+nM6dO2Oz6UtY5HJSTucyd/U+Pt2dimGA3WblTzc34cmeYdSqZjc7nohIpeB2kcnKytINIkV+x9ncAhauP8Abmw7jKCy6Q/wdbRvydN9IQoL8TU4nIlK5uF1k+vTpw1dffUWfPn3KIo+Ix8ovdPLW5iPMX3eAs+cLALi5eW2eGdiS1o1rmJxORKRycrvI5OXlMW7cOFq0aEHNmjUvmr305ptvlmo4EU/gchl8/uMxZq9KJOX0eQAi6gUwbUBLekQGa4afiEgZcrvIhIWFERYWVhZZRDzOpgOnmLFiLz+lngOgXqAPE/tEcneHxtg0E0lEpMy5XWRGjx5dFjlEPErCiXPErkhgfeJJAAJ8vHiiRwuGd2mGn10nwYuIlJcSF5nnn3+e559/nmnTpl12mZkzZ5ZKKJGK6vjZ88xdvY+Pvk/BMMDLauHBm5owJiaM2gE+ZscTEalySlxkLtwgUqQqOpdXwOINB3n92yTyCopmIg1sXZ/J/aJoWqeayelERKquEheZv/3tbwD84Q9/oE2bNr95fuPGjaWXSqSCcBS6eGfrEV5ed4DMHAcAHZvWYtrAlrQPrWVyOhERcfscmWHDhvH9999f9Fh2djbjxo1j165dpRZMxEyGYRAXf4JZqxI4kpELQPPgakztH0Wf6+ppJpKISAVRoiJz5MgRBg0ahNPpxDAMWrZs+Ztl2rdvX+rhRMywLSmTGXF72Z18BoA6AT6M7xPOfdEheNms5oYTEZGLlKjINGnShA8//JBz587x6KOPsmTJkoue9/HxISIiwu2VO51OHn74YRo1akRsbOzvLrtq1SpmzZrF2rVr3V6PSEkcSM8idkUia/amAeBvt/Fot+aM7Nqcaj5u77wUEZFyUOJv5wt7Yb744gtCQkKKH8/OzsZut2O3u3/vmAULFrBjxw4aNWp02WUKCgpYtmwZL774IvXq1XN7HSJXkp6Vx7yv9vP+9qO4DLBZLdzXMYSneoVTN9DX7HgiIvI73N5P7nA4ePLJJwH46quvuOmmm+jatSs7d+50a5zNmzezevVq+vbt+7vLDR8+nK1btzJy5Eh3o4r8rpz8QuZ9tY8es9fz7raiEtPnunqseqorM+5qrRIjIuIB3N5fPmPGDOrWrYthGMydO5exY8dSrVo1YmNj+fDDD0s0RkZGBs8++ywLFy5k2bJlv7vs7NmzqV+/Pp988om7US/idDqv6fWXG6+0x5WyV+B08eGOFF5ad4BT2UUzkdqG1GBq/0g6Ng0C9HsVESmJstwWlnRMt4tMYmIir776KqmpqRw9epQ//vGPVKtWjTlz5pTo9S6Xi0mTJjFs2DCioqKuuHz9+vXdjXhJ8fHxpTJOeY0rpc8wDLYdy+e/8Vkcyyr6B1K/mo0Hb6jOTY18sJw5yu7dR01OKSLieczcFrpdZAoLCzEMg++++47rr7+egIAAMjMz8fEp2VVNFy9ejN1uZ+jQoW6HvRatW7fGZiu9S8c7nU7i4+NLfVwpG7uOniF2ZSI7jpwBIMjfmzExYfyhYwh2L81EEhG5GmW5Lbww9pW4XWQ6d+7MmDFjSEhIYMSIESQnJzN58mR69OhRotd/9tlnpKenEx0dDRTdTRtgzZo17Nixw904JWaz2cqkcJTVuFI6kk7lMHtVAnHxJwDw9bbyyC3Neax7c6r7epucTkSkcjBzW+h2kfn73//O0qVLiY6O5tZbbyU9PZ3rr7+eiRMnluj1K1euvOjnqVOnAlxx+rWIO05l5zN/7X7e3nqUQpeB1QJDOjRmQp9I6tfQSbwiIpWF2/vUfXx8KCgo4NVXXyUmJgZ/f3927dpFdnZ2qQRq164dy5cvL5WxpOo573CyYN1+esxez382H6HQZdAzMpi4cV2ZNaSNSoyISCXj9h6Z+fPns3XrVl5++WWeeuop6tSpQ/369fnHP/7BSy+95HaAX++JudxtDgYPHszgwYPdHl+qBqfL4KOdycz9ah9p5/IBaNUokGcGtKRzWB2T04mISFlxu8h8/vnnvPvuu9SrV3S/GX9/f2bOnEmfPn3KIp/I7zIMg/WJJ5m5Yi/70or2Cjau5cekfpHcdkNDrFbdE0lEpDJzu8jk5uYSFFR0rQ3DMADw9fXFatXMDylfP6acYWZcApsPZQBQw69oJtLQm5vg46UTsEVEqgK3i0zbtm1ZsGAB48ePL74D8FtvvUXr1q1LPZzIpSRn5jJ7VSLLfzgGgN3LyrDOTRnVI4wa/pqJJCJSlbhdZJ599lkeeughPv30U3Jychg4cCA5OTm88cYbZZFPpNjpHAcLvj7Am5sPU+A0sFjgrraNmNA3gsa1/M2OJyIiJnC7yISEhPDll1+yfv16UlNTqV+/Pj169CAgIKAs8omQV+Bk2abDvPL1AbLyCgG4JawOUwdE0apRDZPTiYiImdwuMgB+fn4MGDCgtLOIXMTlMvh0VypzVidy7GzRhROj6lfnmYEt6RYRbHI6ERGpCK6qyIiUtW/2n2RGXAJ7j58DoGENXyb2jeTOdo2waSaSiIj8HxUZqVB+PnaOmSv28s3+UwBU9/FiVM8whnVpiq+3ZiKJiMjFVGSkQkg9c545qxP5dFcqhgHeNgtDb2rK6JgwgqrZzY4nIiIVlIqMmOrs+QIWrj/AG98dxlHoAuC2Ng2Z1DeS0NqaiSQiIr9PRUZMkV/o5K3NR1jw9QHO5BYA0KlZEM8MbEmbkJrmhhMREY+hIiPlyuUy+CL+OLNXJZCceR6A8LoBTBsYRc/IusUXWRQRESkJFRkpN5sPZjBzxV5+TDkLQN3qPkzoE8GQDo3xsukWFyIi4j4VGSlz+9KyiF2RwLqEdACq2W083r0FI7o2w9+uv4IiInL1tBWRMnPibB7zvtrHhzuTcRngZbXwx06hjO0VTp0AH7PjiYhIJaAiI6UuK6+AxRsO8dq3h8grKJqJNKBVfSb1i6R5sG5lISIipUdFRkpNgdPFu9uO8tKa/WTkOADo0KQWzwyMokOTIJPTiYhIZaQiI9fMMAxW/nSCWasSSTqVA0DzOtWYMiCKvtfV00wkEREpMyoyck22H85kRtxedh09A0CdADvjekfwh44heGsmkoiIlDEVGbkqB09m88KKBFb/nAaAn7eNkd2a82i35gT46K+ViIiUD21xxC0ns/J5ae0+3t2WjNNlYLXAfR1DGd87nLqBvmbHExGRKkZFRkokJ7+Q175JYvHGg+Q6nAD0blmPKf0jCa9X3eR0IiJSVanIyO8qdLr4YEcK89bs42RWPgBtQmryzIAoOjWvbXI6ERGp6lRk5JIMw2DN3nRiV+zl4MmimUihQf5M7h/JoNYNNBNJREQqBBUZ+Y1dR08zMy6BbYczAajl783YXuE80KkJdi/NRBIRkYpDRUaKHT6Vw+xViXwZfxwAHy8rI25pxuM9WhDo621yOhERkd9SkREysvOZv+4Ab289QoHTwGKBIe0bM6FvBA1q+JkdT0RE5LJUZKqw8w4nS79L4tX1B8nKLwSge0QwUwdE0bJBoMnpRERErkxFpgpyugw+/j6Fuav3ceJcHgDXNwxk2oCW3BJex+R0IiIiJaciU4UYhsH6fSeJjUsgMS0LgEY1/ZjUL5Lb2zTEatVMJBER8SwqMlVEfMpZZq7Yy6aDGQAE+noxJiacoTc3wdfbZnI6ERGRq6MiU8klZ+byr9WJfLb7GAB2m5WHuzRlVI8W1PS3m5xORETk2qjIVFJnch288vUB/rPpCA6nC4A72zZkYt9IQoL8TU4nIiJSOlRkKpm8Aidvbj7MgnUHOJdXNBOpc4vaPDOwJa0a1TA5nYiISOlSkakkXC6Dz35I5V+r9pF65jwAUfWrM3VAFN0jgnVLARERqZRUZCqBb/efYuaKvew5dg6A+oG+TOwbweD2jbFpJpKIiFRiKjIebO/xc8xckcDGfScBqO7jxRM9WzCsczP87JqJJCIilZ+KjAc6duY8c7/ax8ffp2AY4G2z8OBNTRgTE05QNc1EEhGRqkNFxoOcyytg0fqDLP02ifzCoplIg25owOR+kTSpXc3kdCIiIuVPRcYDOApd/HfLEeav28/p3AIAbmwWxLQBUbQLrWVyOhEREfOoyFRghmHwxY/Hmb0qkaOZuQCE1Q1gav8oerWsq5lIIiJS5anIVFBbDmUwM24vP6ScBSC4ug8T+kRwT4fGeNmsJqcTERGpGFRkKpj9aVm8sDKBNXvTAahmt/FY9xY80rUZ/nb9ukRERH5JW8YKIu1cHi+u2cf725NxGWCzWvjjjaGM7RVOcHUfs+OJiIhUSCoyJsvOL+TfGw6y5Jskzhc4Aeh3fT0m94+iRXCAyelEREQqNhUZkxQ4Xby37Sgvrd3PqWwHAO1Da/LMwJZENw0yOZ2IiIhnUJEpZ4ZhsGpPGrNWJnDoVA4AzepUY0r/SPpdX18zkURERNygIlOOdh7JZEZcAjuPnAagdjU7T/UO5w83huKtmUgiIiJuU5EpB4dOZjNrZSIr95wAwNfbysiuzXm0W3Oq+3qbnE5ERMRzqciUoZNZ+by8dj/vbDuK02VgtcC90SGM7xNBvUBfs+OJiIh4PBWZMpDrKOS1b5JYvOEgOY6imUi9ouoyZUAUEfWqm5xORESk8lCRKUWFThcf7kxh3lf7SM/KB+CGxjWYNqAlN7eobXI6ERGRykdFphQYhsG6hHRiVySwPz0bgJAgPyb3i2JQ6wZYrZqJJCIiUhZUZK7RjylniV2ZyNakTABq+nszJiacB28KxcfLZnI6ERGRyk1F5iodP5vH3C1n+C55MwB2LyvDuzTjiR4tqOGnmUgiIiLlQUXmKk379Ce+S87DYoHB7RozoW8EjWr6mR1LRESkSlGRuUqD2zXEuyCHCbe2o1XjWmbHERERqZJUZK7S7W0aEmqk07JBoNlRREREqixdF19EREQ8lqlFxul0MnToUKZOnXrZZTZs2MBtt91G27ZtGTBgAF9//XU5JhQREZGKzNQis2DBAnbs2HHZ5w8fPsyYMWMYN24cO3bsYMyYMTz11FOkpaWVY0oRERGpqEwrMps3b2b16tX07dv3sst8+umnREdH07t3b7y8vBg4cCAdO3bk/fffL8ekIiIiUlGZcrJvRkYGzz77LAsXLmTZsmWXXe7AgQNERERc9FhYWBgJCQlur9PpdLr9mpKMV9rjioiIeIqy3BaWdMxyLzIul4tJkyYxbNgwoqKifnfZnJwc/PwuvjaLr68vubm5bq83Pj7e7deYOa6IiIinMHNbWO5FZvHixdjtdoYOHXrFZf38/MjLy7vosby8PKpVq+b2elu3bo3NVnq3DHA6ncTHx5f6uCIiIp6iLLeFF8a+knIvMp999hnp6elER0cDFBeVNWvW/ObE34iICPbs2XPRYwcOHKBVq1Zur9dms5VJ4SircUVERDyFmdvCcj/Zd+XKlXz//ffs2LGDHTt2cOutt3LrrbdecvbS7bffzrZt24iLi6OwsJC4uDi2bdvGHXfcUd6xRUREpAKqcBfEa9euHcuXLwegRYsWvPLKKyxevJiOHTuycOFC5s+fT7NmzUxOKSIiIhWB6bcoiI2NvejnXbt2XfRz165d6dq1a3lGEhEREQ9R4fbIiIiIiJSUioyIiIh4LBUZERER8VgqMiIiIuKxVGRERETEY6nIiIiIiMdSkRERERGPpSIjIiIiHktFRkRERDyWioyIiIh4LBUZERER8VgqMiIiIuKxVGRERETEY6nIiIiIiMdSkRERERGPpSIjIiIiHktFRkRERDyWioyIiIh4LBUZERER8VgqMiIiIuKxVGRERETEY6nIiIiIiMdSkRERERGPpSIjIiIiHktFRkRERDyWioyIiIh4LBUZERER8VgqMiIiIuKxVGRERETEY6nIiIiIiMdSkRERERGPpSIjIiIiHktFRkRERDyWioyIiIh4LBUZERER8VgqMiIiIuKxVGRERETEY6nIiIiIiMdSkRERERGPpSIjIiIiHktFRkRERDyWioyIiIh4LBUZERER8VgqMiIiIuKxVGRERETEY6nIiIiIiMdSkRERERGPpSIjIiIiHktFRkRERDyWioyIiIh4LBUZERER8VgqMiIiIuKxVGRERETEY6nIiIiIiMdSkRERERGPpSIjIiIiHktFRkRERDyWioyIiIh4LBUZERER8VimFJnNmzdzzz330L59e7p06cLf//538vLyLrnsJ598Qv/+/WnXrh333Xcf27dvL+e0IiIiUlGVe5HJzMzkscce4/7772fHjh18+umnbNu2jX//+9+/WXbt2rX89a9/ZcqUKezYsYMRI0YwcuRIDh06VN6xRUREpALyKu8VBgUFsWnTJgICAjAMgzNnzpCfn09QUNBvlv3iiy+49dZb6dmzJwB9+/blgw8+4OOPP2bSpElurdfpdJZK/l+PV9rjioiIeIqy3BaWdMxyLzIAAQEBAHTv3p20tDSio6MZPHjwb5ZzOp34+/tf9JjVar2qPTLx8fFXF9akcUVERDyFmdtCU4rMBatXr+bs2bM8/fTTjB07ltdee+2i5/v168dzzz1Hv379aN++PevXr2fz5s107NjR7XW1bt0am81WWtFxOp3Ex8eX+rgiIiKeoiy3hRfGvhJTi4yvry++vr5MmjSJe+65h7Nnz1KjRo3i5wcNGkRmZiZ/+ctfOHv2LN27d+fWW2/l/Pnzbq/LZrOVSeEoq3FFREQ8hZnbwnI/2ff777+nf//+OByO4sccDgfe3t74+fldtOzJkyfp2rUrq1atYsuWLbzwwgscPHiQVq1alXdsERERqYDKvchERkaSl5fHnDlzcDgcpKam8sILLzBkyBDsdvtFy27fvp2hQ4eSmppKfn4+y5YtIykpibvuuqu8Y4uIiEgFVO5Fplq1arz22mvs37+fLl26MHToUDp37swzzzwDQLt27Vi+fDkAAwcO5L777uO+++7j5ptvZu3atfznP/+hdu3a5R1bREREKiBTzpEJCwtj6dKll3xu165dF/08evRoRo8eXR6xRERExMOYerKvR8tOo1bqWixeB8HmBVYbWGy/+H/rr37+1eMW66+e+/XPJXjcYjH7UxARETGVisxVsv7vcZonbYDvTQxhuVRZulTxuUKp+k1BKoUx3C1lJXrcWj5ZVBBFRDyGisxVcnUYRnZ2LoHV/LAYLjCc4HL+6v8v9bjrt8sZrksvi/H7IQzX/722oFzec5XhbkG8pr1rZV3KrnWdKogiUrGpyFytlrdzID+Utm3blt3cecO4RDm6TBkql8eNaytsbj9+LQXRdfllVRDNcVFBLOu9a9cy7tVkK4eCeNnnVBClalORqcgslqLzb/RrKl0VqSBebm9chSuIv35OBbHisJTj3rXLjGu5VIbSKJnX+rj1Kt+nCqIn0RZSqh4VxLJREQriRctU5ILoxt7NKxVEDHAVAoXgLIffc5VRhgWxNCZ7lFURdKuU2sAAizPf1N+UvslFpHSoIJYNMwtiqR/yLauC+DuHklUQy5QNaO0TBDf8CLbqpmTQN46ISEWmglg2zCiIbh9KNqsgluBQ8v89bhhO8v3r42f1Nu1XqX8ZIiJS9agglgqX00ni7t20tZlXZMr9FgUiIiIipUVFRkRERDyWioyIiIh4LBUZERER8VgqMiIiIuKxVGRERETEY6nIiIiIiMdSkRERERGPpSIjIiIiHktFRkRERDyWioyIiIh4LBUZERER8VgqMiIiIuKxVGRERETEY1X6+5cbhgGA0+ks1XEvjFfa44qIiHiKstwWXhjzwnb8cizGlZbwcA6Hg/j4eLNjiIiIyFVo3bo1drv9ss9X+iLjcrkoLCzEarVisVjMjiMiIiIlYBgGLpcLLy8vrNbLnwlT6YuMiIiIVF462VdEREQ8loqMiIiIeCwVGREREfFYKjIiIiLisVRkRERExGOpyIiIiIjHUpERERERj6UiIyIiIh5LRUZEREQ8lorMJTz33HMMHz78osemT5/O5MmTOXr0KI8//jidOnWiZ8+ezJs3D4fDAUB2djbjx4+nU6dOdOnShREjRnDw4EEz3oKIiEipSUlJITIykg8//JCYmBg6dOjAsGHDOHHiBABr1qxh8ODBtG/fnn79+rFs2TJcLle5ZFORuYQhQ4awefNm0tLSgKIbT3755ZcMHDiQhx9+mPDwcDZu3Mg777zDpk2bmD9/PgBLly4lOzubDRs28PXXXxMcHMy//vUvM9+KiIhIqVm/fj3/+9//WLVqFadOnWLhwoVs2bKFp556ikceeYRt27Yxd+5c3njjDd58881yyaQicwk33HADLVq04IsvvgCKfnEBAQHk5ubicDiYMGECPj4+NGjQgHHjxvH2228D4OvrS0JCAv/73/9IS0tjxowZLFq0yMy3IiIiUmpGjhxJYGAgderUISYmhsOHD/PJJ5/Qq1cvBg4ciJeXF9dffz2PPvoo7733Xrlk8iqXtXigwYMH87///Y8RI0bwySefcNddd5GamkpmZiYdO3YsXs4wDAoKCsjIyGDkyJHY7XY++ugjpk+fTkhICBMnTqRv374mvhMREZHSUadOneI/e3l5YRgGGRkZtGzZ8qLlGjduTGpqarlkUpG5jDvuuIO5c+eya9cuvvvuO5577jl27txJaGgoK1euLF4uOzubjIwMgoKCSExMJCYmhocffpisrCzeeecdxo8fz5YtW6hevbqJ70ZERKRsNGrUiKNHj170WHJyMsHBweWyfh1auozatWvTvXt3pk+fTnR0NA0bNqRnz57k5OTw2muv4XA4OHfuHFOmTGH8+PFYLBY+/PBDJk+eTEZGBgEBAQQEBODv74/dbjf77YiIiJSJu+++m3Xr1rFixQqcTic///wzS5Ys4e677y6X9avI/I7Bgwfz888/F/8yAgICWLZsGVu3bqVbt2707t0bq9VafB7MhAkTaNKkCYMGDaJ9+/Z88sknLFy4EB8fHzPfhoiISJlp06YNL730EkuWLCE6OprRo0dz//338/jjj5fL+i2GYRjlsiYPlJCQwNChQ/n2229VRkRERCognSNzCdnZ2Rw7dowXX3yRwYMHq8SIiIhUUDq0dAknTpzgvvvu4+zZs4waNcrsOCIiInIZOrQkIiIiHkt7ZERERMRjqciIiIiIx1KREREREY+lIiMiIiIeS0VGRMpdfn4+J06cMDuGiFQCKjIiUu7++Mc/smnTJrNjiEgloCIjIuXu9OnTZkcQkUpCRUZEytXw4cM5duwYf/3rX5k+fTp79uxh6NChdOzYkb59+7Js2TIuXN5q/vz5jB07lqeffpro6Gi6devGnDlziscaOnQo8+fPL/45JSWFyMhIUlJSAIiMjOQf//gHnTp1Kr7vy6ZNmxgyZAjR0dEMGjSI5cuXl+O7F5HSplsUiEi5Wrp0KTExMYwePZouXbowaNAgxo8fz9KlSzly5AijRo3C19eXP/zhDwCsXr2a2NhYXnjhBb799lsee+wxevXqRdu2bUu0vqNHj7J+/XoKCgpISEjgiSeeYPbs2fTq1YsffviBUaNGUatWLbp27VqG71pEyor2yIiIaZYvX06LFi144IEH8Pb2JiwsjBEjRvD2228XL9O0aVPuvPNObDYb3bt3Jzg4mMOHD5d4Hbfeeit+fn4EBgby3nvv0atXL/r27YvNZqN9+/bce++9F61PRDyL9siIiGlSU1PZs2cP0dHRxY+5XC5sNlvxz8HBwRe9xtvbG5fLVeJ11K1b96L1bdmy5aL1OZ1OQkNDrya+iFQAKjIiYpr69evTqVMnXn/99eLHTp8+TU5OToleb7VaKSgouOi1v2axWC5a31133cX06dOLH0tPT0e3nBPxXDq0JCLlzm63k5WVxW233cbu3btZvnw5hYWFpKen8/jjjxMbG1uicVq0aME333zDuXPnyMrKYsmSJb+7/JAhQ/jiiy/49ttvcblcHD58mAcffJClS5eWxtsSEROoyIhIuRsyZAjz5s1j3rx5vPbaa7z//vt07tyZO+64g+bNm5e4yDz22GPUrl2bXr16cccddxATE/O7y7dp04a5c+cyd+5cOnbsyIMPPkhMTAwTJ04sjbclIiawGNqnKiIiIh5Ke2RERETEY6nIiIiIiMdSkRERERGPpSIjIiIiHktFRkRERDyWioyIiIh4LBUZERER8VgqMiIiIuKxVGRERETEY6nIiIiIiMdSkRERERGP9f8ALUPFB9r4kfsAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Your answer here\n", "sns.lineplot(data=me.predictions(ancova2, newdata=anova_predmat),\n", " y='estimate', x='tenure',\n", " hue='gender')" ] }, { "cell_type": "markdown", "id": "96b774ec-7b88-48b5-abb9-4b92d245367c", "metadata": {}, "source": [ "### g. Interpreting complex interactions with marginal effects\n", "If you've completed the above exercises, you've mastered 99% of the statistics used in basic psychology, and learned how to do it from a much clearer perspective. Lets now build knowledge of how to interpret an even more complex model. \n", "\n", "Lets suppose that, rather than controlling for beauty's influence on teaching evaluations for tenured and non-tenured males and females, you want to know whether it influences evaluations at these combinations. That is, you might wish to see how less attractive males are evaluated before and after tenure, and whether this change is different for females, who are typically judged more harshly on their looks. \n", "\n", "To do this, you will need an interaction between gender, beauty, and tenure. Fit a model that does this, and call it `three_interact`. Print the summary." ] }, { "cell_type": "code", "execution_count": 21, "id": "964e9828-d394-4fba-9919-214f51e87a9b", "metadata": { "editable": true, "slideshow": { "slide_type": "" }, "tags": [ "hide-input" ] }, "outputs": [ { "data": { "text/html": [ "\n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "
OLS Regression Results
Dep. Variable: eval R-squared: 0.110
Model: OLS Adj. R-squared: 0.097
No. Observations: 463 F-statistic: 8.055
Covariance Type: nonrobust Prob (F-statistic): 3.03e-09
\n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "
coef std err t P>|t| [0.025 0.975]
Intercept 3.8601 0.076 51.031 0.000 3.711 4.009
gender[T.male] 0.5076 0.107 4.741 0.000 0.297 0.718
tenure[T.yes] 0.0275 0.088 0.312 0.755 -0.146 0.201
gender[T.male]:tenure[T.yes] -0.3781 0.122 -3.100 0.002 -0.618 -0.138
beauty 0.0006 0.080 0.008 0.994 -0.156 0.157
gender[T.male]:beauty 0.1362 0.124 1.094 0.274 -0.108 0.381
beauty:tenure[T.yes] 0.1301 0.099 1.315 0.189 -0.064 0.325
gender[T.male]:beauty:tenure[T.yes] -0.0934 0.146 -0.640 0.522 -0.380 0.193


Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified." ], "text/latex": [ "\\begin{center}\n", "\\begin{tabular}{lclc}\n", "\\toprule\n", "\\textbf{Dep. Variable:} & eval & \\textbf{ R-squared: } & 0.110 \\\\\n", "\\textbf{Model:} & OLS & \\textbf{ Adj. R-squared: } & 0.097 \\\\\n", "\\textbf{No. Observations:} & 463 & \\textbf{ F-statistic: } & 8.055 \\\\\n", "\\textbf{Covariance Type:} & nonrobust & \\textbf{ Prob (F-statistic):} & 3.03e-09 \\\\\n", "\\bottomrule\n", "\\end{tabular}\n", "\\begin{tabular}{lcccccc}\n", " & \\textbf{coef} & \\textbf{std err} & \\textbf{t} & \\textbf{P$> |$t$|$} & \\textbf{[0.025} & \\textbf{0.975]} \\\\\n", "\\midrule\n", "\\textbf{Intercept} & 3.8601 & 0.076 & 51.031 & 0.000 & 3.711 & 4.009 \\\\\n", "\\textbf{gender[T.male]} & 0.5076 & 0.107 & 4.741 & 0.000 & 0.297 & 0.718 \\\\\n", "\\textbf{tenure[T.yes]} & 0.0275 & 0.088 & 0.312 & 0.755 & -0.146 & 0.201 \\\\\n", "\\textbf{gender[T.male]:tenure[T.yes]} & -0.3781 & 0.122 & -3.100 & 0.002 & -0.618 & -0.138 \\\\\n", "\\textbf{beauty} & 0.0006 & 0.080 & 0.008 & 0.994 & -0.156 & 0.157 \\\\\n", "\\textbf{gender[T.male]:beauty} & 0.1362 & 0.124 & 1.094 & 0.274 & -0.108 & 0.381 \\\\\n", "\\textbf{beauty:tenure[T.yes]} & 0.1301 & 0.099 & 1.315 & 0.189 & -0.064 & 0.325 \\\\\n", "\\textbf{gender[T.male]:beauty:tenure[T.yes]} & -0.0934 & 0.146 & -0.640 & 0.522 & -0.380 & 0.193 \\\\\n", "\\bottomrule\n", "\\end{tabular}\n", "%\\caption{OLS Regression Results}\n", "\\end{center}\n", "\n", "Notes: \\newline\n", " [1] Standard Errors assume that the covariance matrix of the errors is correctly specified." ], "text/plain": [ "\n", "\"\"\"\n", " OLS Regression Results \n", "==============================================================================\n", "Dep. Variable: eval R-squared: 0.110\n", "Model: OLS Adj. R-squared: 0.097\n", "No. Observations: 463 F-statistic: 8.055\n", "Covariance Type: nonrobust Prob (F-statistic): 3.03e-09\n", "=======================================================================================================\n", " coef std err t P>|t| [0.025 0.975]\n", "-------------------------------------------------------------------------------------------------------\n", "Intercept 3.8601 0.076 51.031 0.000 3.711 4.009\n", "gender[T.male] 0.5076 0.107 4.741 0.000 0.297 0.718\n", "tenure[T.yes] 0.0275 0.088 0.312 0.755 -0.146 0.201\n", "gender[T.male]:tenure[T.yes] -0.3781 0.122 -3.100 0.002 -0.618 -0.138\n", "beauty 0.0006 0.080 0.008 0.994 -0.156 0.157\n", "gender[T.male]:beauty 0.1362 0.124 1.094 0.274 -0.108 0.381\n", "beauty:tenure[T.yes] 0.1301 0.099 1.315 0.189 -0.064 0.325\n", "gender[T.male]:beauty:tenure[T.yes] -0.0934 0.146 -0.640 0.522 -0.380 0.193\n", "=======================================================================================================\n", "\n", "Notes:\n", "[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.\n", "\"\"\"" ] }, "execution_count": 21, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Your answer here\n", "# three variable interaction\n", "three_interact = smf.ols('eval ~ gender * beauty * tenure', data=profs).fit()\n", "three_interact.summary(slim=True)" ] }, { "cell_type": "markdown", "id": "b07f0191-41fa-47d4-9c4b-788077a41835", "metadata": {}, "source": [ "Confusion abounds looking at the coefficients. Lets make sense of this by asking for predictions from the model. Generate a data grid that asks for beauty to be evaluated at [-2, 0, 2] (that's -2 standard devs below average, average, and 2 above, as the variable is scaled so by the authors), for tenured and non-tenured males and females." ] }, { "cell_type": "code", "execution_count": 22, "id": "ba8978f1-5faf-43c9-a7e7-d8416d1c9481", "metadata": { "editable": true, "slideshow": { "slide_type": "" }, "tags": [ "hide-input" ] }, "outputs": [ { "data": { "text/html": [ "
\n", "shape: (12, 13)
gendertenurebeautyrownamesminorityagecreditsevaldivisionnativestudentsallstudentsprof
strstri64i64stri64strf64strstri64i64i64
"male""yes"-2243"no"52"more"3.998272"upper""yes"121534
"male""yes"0243"no"52"more"3.998272"upper""yes"121534
"male""yes"2243"no"52"more"3.998272"upper""yes"121534
"male""no"-2243"no"52"more"3.998272"upper""yes"121534
"male""no"0243"no"52"more"3.998272"upper""yes"121534
"female""yes"0243"no"52"more"3.998272"upper""yes"121534
"female""yes"2243"no"52"more"3.998272"upper""yes"121534
"female""no"-2243"no"52"more"3.998272"upper""yes"121534
"female""no"0243"no"52"more"3.998272"upper""yes"121534
"female""no"2243"no"52"more"3.998272"upper""yes"121534
" ], "text/plain": [ "shape: (12, 13)\n", "┌────────┬────────┬────────┬──────────┬───┬────────┬──────────┬─────────────┬──────┐\n", "│ gender ┆ tenure ┆ beauty ┆ rownames ┆ … ┆ native ┆ students ┆ allstudents ┆ prof │\n", "│ --- ┆ --- ┆ --- ┆ --- ┆ ┆ --- ┆ --- ┆ --- ┆ --- │\n", "│ str ┆ str ┆ i64 ┆ i64 ┆ ┆ str ┆ i64 ┆ i64 ┆ i64 │\n", "╞════════╪════════╪════════╪══════════╪═══╪════════╪══════════╪═════════════╪══════╡\n", "│ male ┆ yes ┆ -2 ┆ 243 ┆ … ┆ yes ┆ 12 ┆ 15 ┆ 34 │\n", "│ male ┆ yes ┆ 0 ┆ 243 ┆ … ┆ yes ┆ 12 ┆ 15 ┆ 34 │\n", "│ male ┆ yes ┆ 2 ┆ 243 ┆ … ┆ yes ┆ 12 ┆ 15 ┆ 34 │\n", "│ male ┆ no ┆ -2 ┆ 243 ┆ … ┆ yes ┆ 12 ┆ 15 ┆ 34 │\n", "│ male ┆ no ┆ 0 ┆ 243 ┆ … ┆ yes ┆ 12 ┆ 15 ┆ 34 │\n", "│ … ┆ … ┆ … ┆ … ┆ … ┆ … ┆ … ┆ … ┆ … │\n", "│ female ┆ yes ┆ 0 ┆ 243 ┆ … ┆ yes ┆ 12 ┆ 15 ┆ 34 │\n", "│ female ┆ yes ┆ 2 ┆ 243 ┆ … ┆ yes ┆ 12 ┆ 15 ┆ 34 │\n", "│ female ┆ no ┆ -2 ┆ 243 ┆ … ┆ yes ┆ 12 ┆ 15 ┆ 34 │\n", "│ female ┆ no ┆ 0 ┆ 243 ┆ … ┆ yes ┆ 12 ┆ 15 ┆ 34 │\n", "│ female ┆ no ┆ 2 ┆ 243 ┆ … ┆ yes ┆ 12 ┆ 15 ┆ 34 │\n", "└────────┴────────┴────────┴──────────┴───┴────────┴──────────┴─────────────┴──────┘" ] }, "execution_count": 22, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Your answer here\n", "# Get predictions\n", "predmat = me.datagrid(three_interact, \n", " gender=['male', 'female'],\n", " tenure=['yes', 'no'],\n", " beauty=[-2, 0, 2])\n", "\n", "# Show\n", "predmat" ] }, { "cell_type": "markdown", "id": "3b021e15-879a-448c-9dbd-77749685063c", "metadata": {}, "source": [ "Once done, ask the model to predict the outcomes, and plot them. There are now three variables to deal with - so think carefully how you plot them!" ] }, { "cell_type": "code", "execution_count": 23, "id": "dd087ee6-74a8-400e-be05-653aefbf14f8", "metadata": { "editable": true, "slideshow": { "slide_type": "" }, "tags": [ "hide-input" ] }, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 23, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjIAAAGtCAYAAAAMFJ5SAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAACHJ0lEQVR4nOzdd3gU1f7H8feW9AYhjRRaCp0kEEQpUgKIoijdBoKoeEG6em2/e6/ee5VrAVFBsSB2BUQFRaWLSA0kgLQUWhIgCQmk1935/TFhQ4RAAkkmu/m+nsfH3ZPJ7PfshOwnZ86c0SmKoiCEEEIIYYX0WhcghBBCCHG9JMgIIYQQwmpJkBFCCCGE1ZIgI4QQQgirJUFGCCGEEFZLgowQQgghrJYEGSGEEEJYLQkyQgghhLBaRq0LqGtms5mysjL0ej06nU7rcoQQQghRDYqiYDabMRqN6PVVj7vYfJApKyvjwIEDWpchhBBCiOvQuXNn7O3tq/y6zQeZiymuc+fOGAyGWtuvyWTiwIEDtb7fhsTW+yj9s3623kfpn/Wz9T7WZf8u7vtqozHQCILMxdNJBoOhTn6I6mq/DYmt91H6Z/1svY/SP+tn632sy/5da1qITPYVQgghhNWSICOEEEIIqyVBRgghhBBWy+bnyFSHyWSitLS0xt8DUFRUZLPnPWu7jwaDAaPRKJfBCyGEqDWNPsjk5eWRkpKCoig1+j5FUTAajZw8edJmP5jroo/Ozs40b978qpfSCSGEENXVqIOMyWQiJSUFZ2dnvL29a/RhrSgKhYWFODk52XSQqa0+KopCSUkJGRkZHD9+nNDQ0GteUieEEEJcS6MOMqWlpSiKgre3N05OTjX63osrDjo6Otp0kKnNPjo5OWFnZ8fJkycpKSnB0dGxFqoUQgjRmMmfxFz7GnVRe2QURgghRG2STxUhhBBCWC0JMlaouLiYs2fPal2GEEIIoTkJMlbo/vvvZ9u2bVqXIYQQQmhOgowVOn/+vNYlCCGEEA2CBBkr8/DDD3P69Gn++c9/8tJLL3Hw4EHGjRtH9+7dGTx4MEuXLrWsifP2228zffp0nnzySaKiorj11lt54403LPsaN24cb7/9tuV5SkoKbdu2JSUlBYB27drx6quvcvPNN/P4448DsG3bNkaNGkVUVBRDhw5l1apV9dh7IYQQDUZpIbo/v6XJ6d80LaNRX35tjZYsWcKAAQN44okn6NWrF0OHDmXWrFksWbKEkydPMmXKFBwdHbn33nsBWLt2LXPnzuV///sfW7duZfLkyURHRxMREVGt10tJSWHTpk2UlZVx5MgR/va3v/Haa68RHR3Nvn37mDJlCk2bNqVPnz512GshhBANRsZRiPkY9n2FvugCwYBpwARw8dSkHBmRsWKrVq0iODiYBx54ADs7O0JCQpg0aRJffPGFZZtWrVpxzz33YDAY6Nu3L97e3pw4caLarzFkyBCcnJxwd3fn66+/Jjo6msGDB2MwGOjatStjxoyp9HpCCCFsUGkR7F8GS26HhTfBzneh6AKKRxAnO88ARw/NSpMRGSuWmprKwYMHiYqKsrSZzeZK90Xy9vau9D12dnaYzeZqv8al35+amsqOHTsqvZ7JZKJFixbXU74QQoiGLiMe9iyFfV9CYfn8TJ0BwoZA1ETMrfpybv8BAjUsUYKMFfPz86NHjx589NFHlrbz58+Tn59fre/X6/WVbpZ5pUnEly4W6Ofnx/Dhw3nppZcsbenp6TW+T5UQQogGrKwYDq9WTx+d3FrR7h4I3R6CyAfB3V9tK7+5sJbk1JIVsre3Jzc3l7vuuou4uDhWrVpFWVkZ6enpPP7448ydO7da+wkODub3338nJyeH3NxcPvjgg6tuP2rUKH788Ue2bt2K2WzmxIkTPPjggyxZsqQ2uiWEEEJL5xLh1+fhjXbw7SQ1xOj0EHY73L8MZu6Hvk9XhJgGQkZkrNCoUaOYP38+Bw4c4MMPP+T111/nP//5DwaDgX79+vH8889Xaz+TJ0/m+eefJzo6Gjc3N6ZPn86vv/5a5fbh4eHMmzePefPmMWPGDJycnLjzzjuZPXt2bXVNCCFEfSorgSPloy8nfq9od/OHruOh6zjw0PLE0bVJkLFCjzzyCI888ojleVWTbadNm3ZZ28aNGy2PfX19+fDDDyt9/Z577rE8PnLkCAUFBZW+3q9fP/r163cdVQshhGgwMpNg7ycQ+wUUnCtv1EHoYOg2Qf2/wToignVUKYQQQogbU1YCR39SJ+8e21zR7tYcIsepIzBNgrSq7rpJkBFCCCFsWdbx8tGXzyE/o7xRByED1dGXsCFWM/pyJdZbuRBCCCGuzFQKR9eooy9JFVMKcPWtGH1p2lKz8mqTpkHGZDIxYcIEAgICqrzSZteuXbz22mskJibi7u7O/fffz+TJk+u5UiGEEMIKnD9ZMfqSl1bRHjwAuk2EtreDwU67+uqApkHmnXfeISYmhoCAgCt+PSkpiccee4x//vOf3HPPPRw9epSHHnqIli1bMmTIkHquVgghhGiATGUQ/wvs+RgSNwDla3u5eKtrvnR9CDxba1piXdIsyGzfvp21a9cyePDgKrf58ssviY6OZvjw4YB6E8Ovv/4aV1fX+ipTCCGEaJgunIK9n8LezyDvbEV7m37loy93gNFes/LqiyZBJjMzk+eff55FixaxdOnSKrfbv38/PXv2ZPbs2fzxxx94enoyYcIExo4dW+PXNF1h9UGTyYSiKJb/auLi9ra8qm1d9PHie20yma54TOrTxdfXuo66Yuv9A9vvo/TP+tV6H81lkLAO/d6lkLgeXfnoi+LshRJ+P0rX8eDZ5tICaud1q1CXx7C6+9Qp9fxJbDabeeSRR+jfvz/jxo3jmWeeAbjiHJnBgweTkZHB/Pnz6d27N7GxsUyePJmXX3652qeWTCYTcXFxVX7daDQSFBSEg4PDdfVH1ExxcTHJycmUlZVpXYoQQlgNu8J0vE6twevUGuyLzlnac7wiOdfyLi749ULR29bcl4siIiIq3UPwr+p9RGbx4sXY29szbty4a25rb29PdHS0ZQG27t27c/fdd/Pzzz/XeI5M586dL3sjioqKOHnyJE5OTjg6OtZof4qiUFhYiJOTU6X7EdmSuuijXq+33Km7pu95bTOZTBw4cOCKPxu2wNb7B7bfR+mf9buhPppNkLi+fPRlHTpFveGv4twMJfw+lMjxuDQLwQXQ6vqjujyGF/d9LfUeZH744QfS09Mtd1AuKioCYP369cTExFTaNjg4mJKSkkptF08H1ZTBYLjsTTYYDOh0Ost/1+NGvtda1GYfL+7rSsdDKw2plrpg6/0D2++j9M/61aiPOafVeS97P4WclIr2lr0haiK69nehMzasswhaHsN6DzK//PJLpedXO7V077338sgjj/DDDz8wbNgwYmJiWL16Na+//nq91CqEEELUC7NJveJoz8fqFUjloy84NYWIB9SF67xCNS2xoWpwC+JFRkby4osvMmzYMG655RYWLVrEW2+9xYsvvoinpyd///vfiY6O1rpMIYQQ4sblnFHXfNn7KWSfqmhv0ROiJkL7YWCn7Wn4hk7zIPPXkZjY2NhKz/v27Uvfvn3rrR5FUSgsvfZMaUVRKCgxgbHshk+7ONkZqr2Pf/zjH6SkpLBkyRJL20svvUReXh5PPPEEL7/8MrGxsTg7OzNs2DCmTp2Kvb09eXl5/N///R/btm3DaDTSrl07nnvuOYKDg2+odiGEEDVkNsOxjeodp4/+DEr5Z45jE4i4X133xaedpiVaE82DTEOiKAqj3tvOnpPn6/V1o1o2Zfnjt1QrzIwaNYqxY8eSlpaGr68vJSUl/PTTT/zvf/9jwoQJDB06lAULFpCVlcX06dMxm83MmTOHJUuWkJeXx2+//YZer+cf//gHr7/+Ou+++2499FAIIQS5aRD7mbry7oVLRl+CblZHXzrcDXZO2tVnpSTI/EVDn7bbpUsXgoOD+fHHH5k0aRKbN2/G1dWVgoICSkpKmD17NjqdjubNmzNjxgymT5/OnDlzcHR05MiRI3z//ff06tWLl19+Gb1er3V3hBDCtilm3DJi0C+fD/E/q+vAADh4QPi96twX3w6almjtJMhcQqfTsfzxW6p/aqmgEGfnG780uSanlgBGjBjB999/z6RJk1i5ciXDhw8nNTWVrKwsunfvXqnG0tJSMjMzefTRR7G3t2fFihW89NJLBAUFMWfOnKuurCyEEOI65aVD3Bfo9ywl7PyJivbAm8pHX+4Be2etqrMpEmT+QqfT4Wx/7bdFURQoM+Bsb6z3y6/vvvtu5s2bR2xsLH/88Qf/+Mc/2LNnDy1atKh0VVheXh6ZmZl4enpy9OhRBgwYwIQJE8jNzeXLL79k1qxZ7NixAzc3t3qtXwghbJLZDCe2qHNfjvwE5lJ0gMnogi7iPvTdHwbfjlpXaXMkyFihZs2a0bdvX1566SWioqLw9/fH3d2dV199lQ8//JDx48dTVFTEs88+y5kzZ1i5ciXLly/n4MGDLFy4EE9PT1xdXXF2dsbe3vbvwyGEEHUq/xzEfQF7lkLWsYr2gCjMXcezvyyYLlG3gI2vlaMVmSRhpUaMGMGhQ4cYOXIkAK6urixdupSdO3dy6623MnDgQPR6vWUy7+zZs2nZsiVDhw6la9eurFy5kkWLFsmtGYQQ4nooChzfAssnwhvtYN0/1BBj7wZRk2Dy7/DoBpSIBzEbZQJvXZIRGSsVEBCAu7s7gwYNsrQFBwfzwQcfXHF7FxcX/ve//9VXeUIIYZvyM2Hfl+roS2ZiRbt/V3XibqeR4OCqVXWNkgQZK5OXl8fp06d58803GTFihIyoCCFEXVMUOLlNXXX30A9gKr91jr0rdB6tBhj/CC0rbNQkyFiZs2fPMnbsWNq1a8eUKVO0LkcIIWxXQRbs+0odfTkXX9HePBy6TYTOo8BBLpbQmgQZKxMSEnLZ6sdCCCFqiaLAqR3q6MvB78FUrLbbuUDnkWqACeiqaYmiMgkyQgghROF52Pe1OvqScaSi3a9z+ejLaHB016w8UTUJMkIIIRonRYHkXeWjL99BWZHabucMnUZAt4fV0Zd6XitM1IwEGSGEEI1L4QXYv0wNMOmHKtp9O6kTd7uMAUcPraoTNSRBRgghhO1TFEiJUcPLnyuhrFBtNzqVj75MhMAoGX2xQhJkhBBC2K6i7PLRl6WQ9mdFu3d79Z5HXcaCUxOtqhO1QIKMEEII26IokLq3fPTlWygtUNuNjtBxuDr6EnSTjL7YCAkyQgghbENxbsXcl7MHKtq92laMvjh7alefqBMSZIQQQli307HqHacPrIDSfLXN4AAd7lYDTItbZPTFhkmQ+StFqRiGvNZ2JYVgVG78H4ids/wjE0KImijOVYPLno/hzL6K9mahangJv09GXxoJCTKXUhRYchsk77zmpjrApbZeN+hmePiXaoeZlJQUoqOj+c9//sO7775LdnY2Xbp04ZVXXsHPz4/169ezaNEiTpw4gbe3N/fddx/jx49Hr5ebnQshrNyZfeWjL8uhJE9tM9hD+2FqgGnZS/4wbGQkyFzGev4BbN68me+//56SkhImTpzIokWLuOOOO5g5cyavvvoqgwcP5ujRo5Z7Mk2YMEHbgoUQ4nqU5KuTdmM+htN7K9qbhajrvoTfDy7NNCtPaEuCzKV0OnVkpBqnlhRFoaCgEGdnJ3QanVp69NFHcXdXl8weMGAAsbGxrFy5kujoaO644w4AOnbsyGOPPcZnn30mQUYIYV3OHlDDy/5lUJKrtuntoP1d6uhLqz4y+iIkyFxGpwP7apw0UhQo04G9dvNbvLy8LI+NRiOKopCZmUn79u0rbRcYGEhqamp9lyeEEDVXUgAHV6oBJjWmor1pa3X0JeIBcPXWrDzR8EiQsTEBAQGcOnWqUltycjLe3vIPXwjRgKUdrBh9Kc5W2/RGaHdn+ejLrSDz/MQVSJCxMSNHjuSBBx7g559/tsyR+eCDDxgzZozWpQkhRGWlhXgm/4o+9u+QsruivWkr6PoQRD4Irj6alSesgwQZGxMeHs6CBQtYuHAhzz33HE2bNuW+++7j0Ucf1bo0IYRQpR+BPR+j3/cVrYsuGX1pe4c6+tK6n4y+iGqTIGOFAgMDOXr0aKW2adOmWR5HR0cTHR1d32UJIUTVSgvh0A/qPY9ObQfUa0SLnfywu/kR9F3HgZufpiUK6yRBRgghRN3JOKqGl7gvoeiC2qYzQNvbMUWO589cTyIiu4LBoGWVwopJkBFCCFG7Sovg8Co1wJz8o6LdI6hi7ot7czCZIC5OqyqFjZAgI4QQonacS6gYfSnMUtt0eggbot5xOiQa9DLyImqXBBkhhBDXr6wYDq9WA8yJ3yva3QOg63iIHAceAZqVJ2yfBBkhhBA1l5mk3rAx7ksoyFTbdHoIHayOvoQOktEXUS8kyAghhKieshI48qMaYI5vqWh384eu49TRlyZB2tUnGiUJMkIIIa4u6xjs+QTivoD8jPJGnTrq0m2iOgpjkI8ToQ35yRNCCHE5Uykc+UkdfTm2uaLd1U8dfek6Hpq00Kw8IS6SICOEEKLC+RPq6Evs55CfXt6og+AB6qq7YUPAYKdlhUJUIkFGXFVMTAyPPfbYZSsJCyFsiKkUjv6sjr4kbQIUtd3Fp2L0pWkrLSsUokoSZIQQorG6cKpi9CXvbEV7m/7q6EvbO2T0RTR4EmSs1KFDh/j3v//NkSNHaNGiBUOGDGH58uVs3LiRbdu2MW/ePE6cOIGvry+TJ09m2LBhADzzzDPY29uTnp7Ozp078fT05KGHHmL8+PEApKen849//INdu3bRtGlTBg0aVOl1T506xcsvv0xsbCzOzs4MGzaMqVOnYm9vz8qVK/n8889p0qQJ+/fv55///Cd33XVXvb83QoirMJVBwq8Q8zEkrqdi9MVbXXG360Pg2VrTEoWoCQkyVigvL49HHnmEsWPH8sknn3D8+HEef/xxdDodR44c4W9/+xuvvfYa0dHR7Nu3jylTptC0aVP69OkDwMqVK1m8eDHvvPMOK1as4KWXXuK2227D19eXWbNm0bRpU7Zs2UJOTg6PP/645XULCgqYMGECQ4cOZcGCBWRlZTF9+nTMZjNz5swB4ODBg8ydO5f33nsPs9msyfsjhLiCC8mw91OI/Qxyz1S0t+5bPvoyFIz22tUnxHWS+6RboY0bN2IwGJg2bRr29va0bduWRx55BICvv/6a6OhoBg8ejMFgoGvXrowZM4YvvvjC8v09evSgV69eGI1GRo4ciclk4tSpU6SmphITE8OTTz6Jq6srzZs3Z/LkyZbv27x5MyUlJcyePRsHBweaN2/OjBkzKu3bzs6Ou+++G3t7exwdHevvTRFCXM5Ups59+WIMLOgCW15VQ4xzM+g5HabthYdWQcfhEmKE1ZIRGSt09uxZ/P390esrcmhQkLoIVWpqKjt27CAqKsryNZPJRIsWFZdJent7Wx7b2annv81mM2lpaQD4+/tbvh4YGGh5nJqaSlZWFt27d7e0KYpCaWkpmZmZln1fWpcQQgPZqRWjLzmpFe2t+qijL+3uBKODdvUJUYskyFghf39/Tp8+jaIo6HQ6AE6fPg2An58fw4cP56WXXrJsn56ejqIo19yvn58fAMnJyQQHBwNYws3Fr7do0YJffvnF0paXl0dmZiaenp4AlnqEEPXMbFLnvMR8rM6BUcpP7Tp5QsT96sJ1XiHa1ihEHZA/na3QgAEDUBSF9957j5KSEo4dO8ZHH30EwKhRo/jxxx/ZunUrZrOZEydO8OCDD7JkyZJr7tff35/evXvzyiuvkJ2dTUZGBosXL7Z8vX///uTn5/Phhx9SUlJCTk4Of//735k1a5YEGCG0knMafnsVFoTDl2Mg/mc1xLTsDSM+hNmH4bb/SogRNkuCjBVydnZm0aJFbNiwgZtuuonZs2fTq1cv7OzsCA8PZ968ecybN4/u3bvz4IMPMmDAAMtk3Gt54403cHNzo3///owaNYqbb77Z8jVXV1eWLl3Kzp07ufXWWxk4cCB6vZ533323rroqhLgSswkS1sFX98P8TrDpv5CdDE5N4eapMHU3TPwJuowGO5mrJmybnFqyQufPn6e0tJQVK1ZY2j777DOOHDkCQL9+/ejXr98Vv3fu3LmXtV262F2TJk2YP38+oM5/KSgo4Mknn7R8PTg4mA8++OCK+x4xYgQjRoyocX+EENWUe1ad97LnU8g+VdHe4hb11FGHuyW4iEZHgowVMplMPPTQQyxcuJC+ffuSkpLCl19+yT333KN1aUKI2qaYIWkjxH6iXoFkLlPbHT0g/H7o9hD4tNe2RiE0JEHGCnl5efHmm2/y+uuvM3PmTNzd3Rk+fDiTJk3SujQhRG3JS0e351M67fwQQ8El674E9VBHXzreA3ZOmpUnREMhQcZKDRw4kIEDB2pdhhCiNpnNcPw39Z5HR35Cby7DAVAc3NGF36sGGN8OWlcpRIMiQUYIIbSWlwFxn6v3PTp/3NKsBERx0nsAQUOmY3B007BAIRouCTJCCKEFRYHjW9TRl8M/grlUbXdwhy5joNsEzN4dyIyLI8jOWdtahWjAJMgIIUR9ys+EuC9gz1LISqpoD+imnjrqNALsXdQ2k0mTEoWwJhJkhBCirikKnNhaPvqyGkwlaru9m7rWS7eJ0LyLtjUKYaUkyAghRF0pyIK4L9XRl8yEivbmEeo9jzqNAgdXraoTwiZIkBFCiNqkKHBymzr6cuiHitEXO5fy0ZcJ4B+paYlC2BIJMkIIURsKsmDf1+roy7mK1bLx66KOvnQeDQ5y5ZEQtU3Tey2ZTCbGjRvHM888c81t4+PjCQ8PZ+fOnfVQWeMxYMAAVq5cqXUZQlgnRYFTO2DlZJjXHn59Vg0xds7QdTw8uhEmb4GohyXECFFHNB2Reeedd4iJiSEgIOCq2xUWFjJnzhyKiorqqTIhhLiKwvOw7xt19CXjcEW7b2eImgCdx4Cju1bVCdGoaBZktm/fztq1axk8ePA1t33xxRcZOHAg8fHxdV6XoijVCkyKolBYWIhOp0On093Qazo6OtZoHykpKURHR/O///2PBQsWcP78eW6//XZGjhzJSy+9RHJyMl26dGH+/PnY29szd+5cdu3aRXp6Om5ubjzwwAM8/vjjl+23pKSEd999l1WrVpGbm0t4eDizZ8+mXbt2N9Q/IWyCokDKboj5GA6uhLLy3xNGJ+g0Uj19FNANbvD3gRCiZjQJMpmZmTz//PMsWrSIpUuXXnXb77//npMnT/Lf//6XRYsWXfdrmq6wHoPJZEJRlEr/PfLII+zfv/+6X+d6hIeH88EHH1Q7zCiKAsBvv/3GTz/9RHJyMsOHD+fQoUO8//772Nvbc++99/Lll19y7tw5UlJSWL58OW5ubqxdu5YZM2YwZMgQWrZsWanv8+fPZ8eOHSxduhRvb28++OADpk6dyk8//YSjY+3cUffia5lMpisek/p08fW1rqOu2Hr/oJ76WJSD7sAydHuXoks/ZGlWfDqgdJ2A0nm0egNHUG8xUIts/Rjaev/A9vtYl/2r7j7rPciYzWaeeuopJk6ceM2/9JOSkpg/fz5fffUVBoPhhl73wIEDV2w3Go0UFhZiNpstH7L1zWw2U1BQUO0gc3HE6P7770dRFAIDA/Hy8uKOO+7AzU09D9+pUydOnjzJ9OnTMRgM6PV6jh+vWPr81KlTeHt7oygKJSUl5Ofn89VXX/Haa6/h6emJyWRi4sSJLFu2jHXr1hEdHV0rfS0uLqa0tJQjR47Uyv5qQ1U/G7bC1vsHddBHRcH5whG8T67GM3UTenMxAGa9PVn+/TnX8k7ym3ZQR1+OHL/Gzm6crR9DW+8f2H4ftexfvQeZxYsXY29vz7hx4666XXFxMbNmzeK5557D39//hl+3c+fOl4WhoqIiTp48iZOTk2XE4aOPPqrRqSUnJ6d6P7V0sVY/Pz+cndWlyw0GA15eXpbndnZ2ABQUFPDyyy9z6NAhAgMD6dixIwD29vY4Ozuj0+mwt7enqKiIwsJC/v73v6PXV8wBLy0tJSMjw7LfG6XX67GzsyMkJKTWRnmul8lk4sCBA1f82bAFtt4/qIM+FuegO7BCHX1J+9PSrHi1Rek2AaXzWJo6NaHpjb9Stdj6MbT1/oHt97Eu+3dx39dS70Hmhx9+ID09naioKKBidGH9+vXExMRYtjtw4AAnTpzg+eef5/nnn7e0P/7449x9993861//qtHrGgyGy95kg8FgmeNyMUjodLpqfWhfHLm5GAbq06W1/vXxpc8BZs6cyYABA/joo48wGo2cP3+e5cuXV9pep9Ph6emJg4MDS5YsISIiwtLHQ4cO0bJly1rr48XXu9Lx0EpDqqUu2Hr/4Ab7qChweq869+XPb6G0oHynDtBxOERNRBfUo97/nV/K1o+hrfcPbL+PWvav3oPML7/8Uun5xUuv586dW6k9Kirqsrkqbdu25b333qNHjx51W6QNyc3NxdHREYPBQFZWFv/9738BdaTlUnq9nlGjRvHGG2/w2muv4ePjw/fff88LL7zA8uXLLSM5QtiM4lw4sFwNMGcv+V3jFabeMiD8XnD21K4+IUS1aLqOzJVERkayatUqrcuwGa+88gpr1qyha9eujBgxAl9fXzp06HDFK8D+/ve/Ex4ezv33309UVBSffPIJr732Gh06dNCgciHqyOk4WD0D3mgHP85SQ4zBQb1kesIamLoLbpkiIUYIK6H5yr5/HYmJjY2tctujR49W+bXGJDAw8LL3YuPGjZWeX/q+/vzzz1Xu69Lvc3Bw4Mknn+TJJ58E1FNLBQUFtVGyENoqzoM/V6jrvpy+5HdMsxB19CXifgkuQlgpzYOMEELUmTP71Xse7V8OJblqm94OOgxTA0yr3rLuixBWToKMEMK2lOSrk3b3LIXUPRXtnsHqDRsj7gcXL62qE0LUMgkyQgjbcPbP8tGXZVCco7bp7aD9neWjL31A3+CmBQohbpAEGSGE9SotoFnyL+j3Pg2pFcs30LR1+ejLA+DqrVl5Qoi6J0FGCGF90g7BnqXo931FK8voixHaDVVHX1r3ldEXIRoJCTJCCOtQWggHv1dPHyXvBEAHFDs3x67HI+i7jgM3X01LFKIxSTlfwOLfkkjPyObtLgparfcnQUYI0bClH1En7u77CoouqG06A7S7A1PkQ/yZ04SIyK5o9ltUiEbmTHYhCzcl8s3uZEpNCvYGKCw1YW+nTaSQICOEaHhKi+DQD+roy6ntFe0eLaDbeIgcB25+YDJBXJxmZQrRmKTnFLFocxJf7jpFSZl6p/eewc0Y1krB1UG7OCFBRgjRcGTEl4++fAmF59U2nQHChkDURAgeAHoZeRGiPp3LK2bxb0l8tuMkRaVqgLmplSezB4fRvWUT4jT+Y0KCjBBCW2XFcGiVOvpy8o+KdvdA6PYQRD4I7v7a1SdEI3U+v4T3fz/GJ9tOUFBiAiCyRRPmDGpLr5Bm6HQ6TCaTxlVKkLFKa9as4d///jclJSW8/vrr9O/fv85fMyUlhejoaDZs2EBgYGCdv55oBM4lquEl7ksozFLbdHoIvU0dfQkZKKMvQmggu6CUj7YeY8kfJ8grLgOgS6AHswaF0S/MW9M7wV+JBJkrKCwsvOrX7ezsLLcrLy0tvWoi1el0ODo6Auq9i4qKii7bxsnJqUb1LV++nKFDh/LCCy/U6PuE0FxZCRxZrd5x+sTvFe3uAdB1vDr64iFBWQgt5BaVsmTrCT7ceozcIjXAtG/uzuxBYQxs79PgAsxFEmSuoE+fPlf9+ty5c4mOjgZg0aJFfP7551Vu26FDBz799FMALly4wKBBgy7bJiYm5rK2qowaNYqDBw+ye/duNm/ezJIlS3j55ZeJjY3F2dmZYcOGMXXqVOzt7Vm5ciUrVqwgPDycb7/9Fr1ez9SpU3FwcODdd98lJyeHoUOH8tJLLwGQlJTEq6++ytGjR8nKyiIwMJBp06YxZMiQy+o4d+4cc+fOZfv27eh0OgYMGMDTTz+Nq6trtfsiGpHMJHXuS9yXUHCuvFEHoYPLR18GgUF+HQmhhfziMpZuO8EHvx/jQkEpAG193Zg1KJTBHfzQ6xtmgLlIVoyyMitWrCAqKorJkyezatUqJkyYQGhoKFu2bOHLL79k27ZtvP3225bt9+zZg6+vLzt27GD69Om88sor7Ny5kzVr1rB06VJWrFjB7t27AZg2bRphYWGsW7eOmJgYevfuzSuvvHJZDWazmSlTpqDX6/n1119ZvXo16enp/OMf/6i390FYgbISOPgdfDIM3u4K295SQ4xbc7j1aZh5AB5YBm1vlxAjhAYKS0y8vyWJPq9u4rVfj3KhoJRgbxfevi+Sn2f0YUin5g0+xICMyFzR77//ftWv29nZWR5PmTKFyZMnV7ntpUNxTZo0uea+a2Lz5s2UlJQwe/ZsdDodzZs3Z8aMGUyfPp05c+YA4OzszEMPPYROp6N3796YTCYmTZqEk5MTnTt3xsfHh9TUVLp3787ixYvx9fVFURRSU1Nxd3cnPT39stf9888/OXjwIB9//DEuLi4A/P3vf2fIkCH83//9H02bNq21PgorlHW8fPTlC8jPKG/UqXNeuk1Qr0CS4CKEZopKTXy58xSLNidxLq8YgFbNnJkxMJRh4QEYrCC8XEp+m1xBdeasKIoCqKHG3t6+WvvV6XQ1ng9zNampqWRlZdG9e/dKdZWWlpKZmQmo4elimNKXL9nu7u5u2V6v12M2q5fTHTlyhClTppCRkUFwcDBNmza19PNSKSkpmEwm+vbtW6nd3t6e5ORkCTKNkakUjq5R574c21TR7uqrrvnSdTw0baldfUIIistMfLM7mYWbEknLUQNMYFMnpkeHMiIyAKPBOk/SSJCxYn5+frRo0YJffvnF0paXl0dmZiaenp4A1Z6clZaWxowZM3jnnXcYMGAAAL/88gvr1q274us6Ojqyc+dOy6TnkpISkpOTadlSPqwalfMnYO+nEPs55KWVN+rU9V66TSg/bWR3lR0IIepaqcnM8pgU3tmYwOls9YITfw9HpkWHMrJrIPZG6wwwF0mQsWL9+/fn1Vdf5cMPP2T8+PEUFRXx7LPPcubMGVauXFmjfeXn52MymSwjRomJiSxatAhQQ8qlunTpQsuWLZk7dy4zZ87EYDAwd+5cNmzYwPr16zEa5cfKpplKIf4XdfQlaSNQPmrn4qNeddTtIWjaSssKhRBAmcnMythU3t6YQHKWejWur7sDT/QPYUz3IByMtrG8gXziWDFXV1eWLl3K3Llz+fDDDzGbzfTo0YN33323xvtq06YNTz/9NE899RSFhYX4+fkxZswYXn31VeLj4yudLjIajSxevJj//e9/DB48mOLiYrp06cLHH3+Mg4NDbXZRNCQXTqmjL3s/g7yzFe1t+ql3nG57Bxird5pVCFF3TGaFVftSWbA+gROZBQB4uTowpV8w9/dogaOdbQSYiyTIWKHPPvvM8jg4OJgPPvjgituNGDGCESNGWJ4HBgZy9OjRStts3LjR8njSpElMmjTJ8lxRFEaNGoWzszM6na7S9/r5+TF//vwb7oto4ExlkPCrOnk3YR2W0RdnL3X0pet4aBasZYVCiHJms8JPB87w5vp4kjLyAfB0sefxvm0Yd3MrnOxtK8BcJEFGCHG57JSK0Zfc0xXtrW9VR1/a3SmjL0I0EGazwtpDZ5m/LoGjabkAeDjZ8ditbZjQsxUuGt7QsT7Ydu+EENVnNqmjLns+hoS1oKhXs+HcDCLuVwOMjL4I0WAoisKGw+nMWxfPoTM5ALg5Gnmkdxse7t0KN8fGMdFegowQjV12KsR+po7A5KRWtLfqo1551P4uMMrcJyEaCkVR2Byfwfx18exPyQbA1cHIw71aMal3GzycG0eAuUiCjBCNkdkEiRvU0Zf4XypGX5yaQsQDaoDxCtW0RCFEZYqi8EdiJvPWHWXvqQsAONkZmNCrFY/1aUNTl8Z5uleCDFxx0TdRN+S91ljOGXXNl72fQHZyRXvLXuWjL8PAzlGz8oQQV7bjWCbz1sWz67h6p3gHo57xt7Rkct9gvFwb94hpow4yly7mVpsr7oqqFRSolwJeepsHUccUMyRsUkdfjv4MSvnd2h2blM99mQDebbWsUAhRhT0ns5i3Lp4/EtXV2u0Neu7v0YIp/YLxcZc/OqCRBxmj0YizszMZGRnY2dlZlvCvDkVRKC4uRq/XN9hbm9+o2uyjoigUFBSQnp5OkyZNLCFS1KG8NPwSvkD/+wR1DZiLgm5W7zjd4W6wkwAvREMUl3yBeevi2RKv3q/MzqBjbPcgpvYPobmH/Lu9VKMOMhdvtHj8+HFOnjxZo++9eE8jOzs7mw4ytd3HJk2a4OfnVyv7EldgNqv3OtrzMfqjPxNgLlPbHT0g/D519MWnvaYlCiGq9mdqNvPXxbPhiHrDXoNex+hugTwxIITAps4aV9cwNeogA+qNDkNDQy9bhv9aTCYTR44cISQkxGZHF2q7j3Z2djb7XmkuL71i7sv5EwDogLymHXDuMxV9pxFgL78EhWioDp/J4c318fx6UL1nmV4HI7oGMm1ACC2buWhcXcPW6IMMqHeAdnSs2blGk0mdZ+Do6GizH86NoY9WzWyGE1vUex4d+QnMpWq7gweEj8UUMZ6jZ0qICI8AOX5CNEgJabm8uSGBn/afAUCng7vD/ZkeHUobb1eNq7MOEmSEsDZ5GRD3hTr6knWsoj0gSp370nE42LuAyQRn4jQrUwhRtWMZeSzYkMCqfae5eDHn0C7NmRkdSqivm7bFWRkJMkJYA0WBE7+roy+HV1eMvti7QZcxaoDx66xtjUKIazqVWcCCDQl8F5uCuTzA3NbRl5kDw2jf3F3b4qyUBBkhGrL8TNj3pXrTxszEinb/ruWjLyPAQYafhWjoUs8Xsui3Y6zYk0JZeYKJbufDrEFhdArw0Lg66yZBRoiGRlHg5B/loy+rwFQ+Ed3eFTqPVgNM83BtaxRCVMuZ7CLe35vNxpVbKDWpAaZvmDezBoUREdRE2+JshAQZIRqKgizY95U6+nIuvqK9ebh6w8bOo8BBzp0LYQ3Sc4pYtDmJL3edoqRMvQVIr5BmzBoYRlQrT42rsy0SZITQkqLAqe3q6MuhH8BUrLbbuajBJWoi+EdqW6MQotrO5RXz3uYkPttxkuLyANPey47/uyeSniHeGldnmyTICKGFwvOw72t19CXjSEW7X+fy0ZfR4CgT/4SwFufzS1i85RifbDtBYam6dEVkiybMig7BOTeZyNYyClNXJMgIUV8UBZJ3qfc8OvgdlBWp7XbO0Glk+ehLV3UhCSGEVcguKOXDrcdYsvU4+SVqgOkS6MHsQWH0DfPGbDYTF5eicZW2TYKMEHWt8ALs/0YdfUk/VNHu20m9ZUCXMeotBIQQViOnqJSPt57gw63HyC1SbwXSobk7sweFEd3ex2ZvXdMQSZARoi4oCqTEqKMvf66EskK13egEnUaop48Co2T0RQgrk19cxtJtJ3h/yzGyC9X1nNr6ujFrUCiDO/ih18u/6fomQUaI2lSUDfuXqaMvaX9WtPt0UMNLlzHg1ESr6oQQ16mwxMRnO07w3m/HyMpXl0QI9nZh5sAwhnZuLgFGQxJkhLhRigKpe2HPEnX0pbRAbTc6qrcL6DYRgm6S0RchrFBRqYkvd55i0eYkzuWpVxW2aubMjIGhDAsPwCABRnMSZIS4XkU5cGC5evro7IGKdu92angJHwtOTbWrTwhx3YrLTHyzO5mFmxJJy1EDTGBTJ6ZHhzIiMgCjQa9xheIiCTJC1FTqXjW8HPgWSvPVNoMDdLxHDTAtbpbRFyGsVKnJzPKYFN7ZmMDpbPXKQn8PR6ZFhzKyayD2RgkwDY0EGSGqozgXDqxQA8yZfRXtzULVy6bD7wNnWSdCCGtVZjKzMjaVtzcmkJylTs73dXfgif4hjOkehIPRoHGFoioSZIS4mtNx6sTdA8uhJE9tM9hDh7vV0ZeWPWX0RQgrZjIrrNqXyoL1CZzIVOe3ebk6MKVfMPf3aIGjnQSYhk6CjBB/VZwHf36rjr6cjq1obxairvsSfj+4NNOsPCHEjTObFX46cIY318eTlKGeIvZ0sefxvm0Yd3MrnOwlwFgLCTJCXHT2gHrPo/3LoCRXbdPbQfu71NNHrfrI6IsQVs5sVvj14FneXJ/A0TT137mHkx2P3dqGCT1b4eIgH4vWRo6YaNT0ZYXo4j6HvZ9A6p6KL3i2UUdfIh4AFy/N6hNC1A5FUVh/OJ356+I5dCYHADdHI4/2acPEXq1wc7TTuEJxvSTIiMYp7SC63UvoEvcV+rLyK4/0Rmh3Z/noy62gl6sThLB2iqKwOT6D+evi2Z+SDYCrg5GHe7ViUu82eDhLgLF2EmRE41FSAIe+V08fpeziYkxRmrZCd3H0xdVHwwKFELVFURT+SMxk3rqj7D11AQAnOwMTerXisT5taOpir22BotZIkBG2L/1w+dyXr9VbCADojShht5PQpA/BAx/GYJS/yoSwFTuOZTJvXTy7jmcB4GDUM/6WlkzuG4yXq4PG1YnaJkFG2KbSQjj0gxpgkndUtDdpAV0fgshxmJ29yI2LA52cQhLCFuw5mcUba+PZlpQJgL1Rz/03tWBKv2B83B01rk7UFQkywrZkHFXDy76voOiC2qYzQNvb1bkvbQZUzH0xmTQrUwhRe+KSLzBvXTxb4jMAsDPoGNs9iKn9Q2ju4aRxdaKuSZAR1q+0CA6vUgPMqW0V7R5B5aMvD4J7c+3qE0LUiT9Ts5m/Lp4NR9IBMOp1jI4KZGr/EAKbOmtcnagvEmSE9TqXoK66G/clFKrnwtHpIax89CV4AOhlUSshbM3hMzm8uT6eXw+mAaDXwYiugUwfEEqLZhJgGhtNg4zJZGLChAkEBAQwd+7cK27z1VdfsXTpUtLT0/Hx8WH8+PE88MAD9VypaDDKiuHwajXAnPi9ot09ELqOh67jwN1fs/KEEHUnIS2XN9cn8NOBM4C6PuXd4f5Mjw6ljberxtUJrWgaZN555x1iYmIICAi44tfXr1/PvHnz+OCDDwgPDycuLo7HHnsMLy8vbrvttnquVmgqM0m9ZUDcl1CgTuRDp4fQweo9j0IHyeiLEDbqWEYeCzYksGrfaRRFbRvapTkzo0MJ9XXTtjihOc2CzPbt21m7di2DBw+ucpu0tDQeffRRIiIiAIiMjKRHjx7s3r1bgkxjUFYCR8pHX45vqWh3868YffEI1Kw8IUTdOpVZwIINCXwXm4K5PMDc1tGXmQPDaN/cXdviRINxXUHmjz/+4LPPPiM9PZ3FixezZMkS5syZg9FYvd1lZmby/PPPs2jRIpYuXVrldn89hZSZmcnu3bt59tlnr6dsYS2yjqnhJfYLKDhX3qhTR126TVRHYQwyvUsIW5VyvoB3NiayYk8KZeUJJrqdD7MGhdEpwEPj6kRDU+NPg9WrV/PKK68wevRodu/eDcDGjRvR6XQ8/fTT1/x+s9nMU089xcSJE2nXrl21XzcjI4PJkyfTqVMn7rzzzpqWjamWL7W9uL/a3m9DUq99NJXC0TXo9y5Fd/w3S7Pi6ocS8QBK5HhoEnRpcTf+kjZ+DG29f2D7fWxs/TuTXcS7m5NYtieFUpMaYG4N9WJmdAjhQU0qbWstGtsxrIt9X4tOUS6ecayeu+66i3//+99ERETQvXt3du/ezYkTJxg/fjxbtmy55ve/++677Nu3j/feew+AZ555BqDKyb4AcXFxzJgxg6ioKF555RXs7au/tLTJZCIuLq7a24v6ZZ9/Gq9Ta/BK/hm74vMAKOjI8e5ORss7yfa9Rea+CGHjzheaWHkkn7XHCigzq22dfey5t6Mr7bzkVgKNXUREBAZD1Z8DNR6ROXv2LOHh4QDodDoAWrZsSUFBQbW+/4cffiA9PZ2oqCgAioqKAHVib0xMzGXbr1ixgv/85z9Mnz6dhx9+uKblWnTu3Pmqb0RNmUwmDhw4UOv7bUjqrI+mUoj/RR19ObbJ0qy4+qKEP4ASOQ7Xpi2p62sQbP0Y2nr/wPb7aOv9S88u5OXvd7P2WBHF5Qmme6umzBoYSo/WnhpXVzts/RjWZf8u7vtaahxkWrVqxYYNGxg4cKClbdu2bbRs2bJa3//LL79Uen61EZlff/2Vf/3rX7z77rv06dOnpqVWYjAY6uSHqK7225DUWh/Pn4S9n0LsZ5CXVtEePAC6TUTX9nZ0hvq/55GtH0Nb7x/Yfh9trX/n80tYvOUYn2w7QWGpevqga4smzBnclp7BzSx/JNsSWzuGf6Vl/2ocZGbNmsWUKVOIjo6muLiYf/3rX/z444+88cYbtVJQZGQkL774IsOGDeOdd97BZDIxffr0StvcddddvPTSS7XyeqKOmcog/hf10unEDUD5mUwXb3XF3a4PgWdrTUsUQtSP7IJSPtx6jCVbj5NfogaY4KZGnh8WTv92vjYZYETdq3GQ6dmzJ19//TXffPMNPXr0wGw2s2TJErp06XJdBfx1JCY2NtbyePXq1de1T9EAXEiuGH3JPVPR3rqvuupu26FglHPfQjQGOUWlfLz1BB9uPUZuURkAHZq7MzM6BM+iVCLDvCXEiOtW4yDz0UcfMWnSJP75z39Wan/zzTeZOXNmbdUlrJGpDBLWqqMvCeuwjL44e0HkA+roS7NgTUsUQtSf/OIylm47wftbjpFdWApAW183Zg0KZXAHPxTFTFzcaY2rFNauWkEmKyuLpKQkAN5++23Cw8O59GKn3NxcPvnkEwkyjVV2asXoS05qRXurPuroS7s7weigXX1CiHpVWGLi0+0nWLzlGFn5JQAEe7swc2AYQzs3R69XR19s9IpkUc+qFWTs7e2ZPn0658+rl8c++OCDl3197NixtV+daLjMJkhcr95xOuFXUMqvmXTyLB99mQBeIZqWKISoX0WlJr7YeYp3NydxLq8YgFbNnJkxMJRh4QEY9HL6SNS+agUZV1dXtm/fDsCQIUMuu/JINCI5p2HvZ+oITE5KRXvL3uroS/u7ZPRFiEamuMzEN7uTWbgpkbQcNcAEeToxfUAowyMDMBr0GlcobFmN58hUFWKysrLw9LSN6/7FX5hNcGyjOvoS/wso5ePBTk0h/H7oNgG8wzQtUQhR/0rKzKzYk8I7GxM4na2uCebv4ci06FBGdQvETgKMqAc1DjL79+/n1VdfJS0tDbNZPZ1QWlpKVlYWf/75Z60XKDSUexa/+M/Qb1kP2ckV7S16lo++DAM7R+3qE0JoosxkZmVsKm9tSCDlfCEAvu4OPNE/hDHdg3Aw2u56KaLhqXGQeemllwgKCiI0NJTk5GR69erFp59+ypw5c+qiPlHfzGbL6Iv+6M8EXBx9cfSoGH3xqf49soQQtsNkVli1L5UF6xM4kamu5u7l6sCUfsHc36MFjnYSYET9q3GQSUhI4PPPPyclJYX//ve/TJw4kcjISF566SUmTpxYFzWK+pCbBnGfw55P4MJJAHRAXtNOOPeZgr7zCLBz0rZGIYQmzGaFnw6c4c318SRl5APg6WLP433bMO7mVjjZS4AR2qlxkHF3d8fR0ZGgoCASEhIA9YZOqamp1/hO0eCYzXB8M+xZCkd+ArO6UBUOHhB+L6bIcRw9XUJEeATY8NLaQogrM5sVfj14ljfXJ3A0LRcADyc7Hru1DRN6tsLFocYfIULUuhr/FLZp04avvvqK++67D2dnZw4fPoy9vb2symhN8jIqRl/OH69oD7xJPXXUcTjYO6uLPJyO06pKIYRGFEVh/eF05q+L59CZHADcHI082qcNE3u1ws2x/u+JJkRVahxkZsyYwd/+9jd69erFpEmTGDNmDAaDgfvuu68u6hO1xWyGE7+rq+4e/hHM6iqbOLhDl7FqgPHrpGmJQghtKYrC5vgM5q+LZ39KNgCuDkYe7tWKSb3b4OEsAUZUSM8tYmt8BtW7ZXTdqXGQ6dq1K1u2bMHOzo6xY8fSvn17cnNz6dWrV13UJ25U/jmI+0I9fZR1rKI9oBt0mwidRoC9i2blCSG0pygKfyRmMm/dUfaeugCAk52BCb1a8VifNjR1kfuiicvNWbaP3xPO8c7tXkRoWMd1neDMysoiNTXVcpsCe3t7du/eTffu3Wu1OHGdFAVObC0ffVkNJnWJcOzdoMtoNcA0v76bfAohbMuOY5nMWxvPrhNZADgY9Yy/pSWT+wbj5SqLWwpVYnouy2JS6B3ixa1h3gCM6hZIXnEZ+SXKNb67btU4yLz77rssWLDgsnadTsfhw4drpShxnfIzYd+X6uhLZmJFu39k+ejLSHBw1aw8IUTDEXMii3nr4tmWlAmAvVHP/Te1YEq/YHzcZX0oAXnFZfy47zTLYpItI3XHMvItQWZYuD93dvYjLi5OuyK5jiCzdOlSFi5cyIABA2SCb0OgKHBymzr6cuiHS0ZfXKHzKDXA+EdoWqIQouGIS77AvHXxbInPAMDOoOPe7i2Y0j+Y5h6yxEJjpygKu0+cZ1lMMj/tP0NhqbqWmEGvo39bH+67KciybUPJADUOMkajkX79+jWYDjRaBVmw72t19OXc0Yr25uFqeOk8ChzcNCtPCNGw/Jmazfx18Ww4kg6AUa9jdFQgU/uHENjUWePqREPx2Y6T/OOHg5bnbbxdGBMVxIiuAfi4NcyRuhoHmQceeID58+fz+OOP4+oqpynqlaLAqR1qeDn4HZjUm7Nh5wKdR6oBJqCrpiUKIRqWw2dymL8unrWH0gDQ62BE10CmDwilRTMJMI1ZSZmZjUfSOF9Qyn03tQBgSEc/Xvv1KLd38mNs9yC6tmja4AcurmsdmTlz5vDRRx9d9jWZI1NHCs/Dvm/UAJNxyXvs2xmiJkDnMeDorlV1QogGKCEtlzfXJ/DTgTMA6HRwd7g/06NDaeMtf4Q2ZvFpuSzbncx3salk5pfg4WTH8MgAHO0M+Lg7EvPCQKu6X1aNg8zcuXN5+OGH6dmzJwZZ7bXuKAok7yoffVkJZeqdZbFzVi+Z7vawOvrSwJOyEKJ+HcvIY8GGBFbtO035haUM7dKcmdGhhPrK6ebGKqeolB/3neGbmGT2JV+wtHu7OTCyayAlJrPlXlnWFGLgOoJMbm6u3CCyLhVegP3L1ACTXnGeEp+O6h2nu4xRb+AohBCXOJmZz1sbEvkuNgVzeYC5raMvswaF0c5PRmwbs+SsAgbN/42iUjOgzo+Kbu/DmKgg+oZ5YzToNa7wxtQ4yAwaNIh169YxaNCguqincVIUSN0DMR/Dn99CWaHabnQqH32ZAIHdZfRFCHGZlPMFvLMxkeV7UjCVJ5iB7X2YOTCMTgHyR09jdCa7kHWH0hh3c0t0Oh2BTZ1o6emCSVEYGxXEPZEBeLvZzhpBNQ4yRUVFzJgxg+DgYJo0aVJpEtCnn35aq8XZvKLs8tGXTyDtQEW7d/uK0RenptrVJ4RosM5kF7JwUyLf7E6m1KQGmL5h3swaFEZEUBNtixP1rrjMxIbD6SyLSWZLfAZmBToHeBBZPln3y0d74Olim/dFrHGQCQkJISQkpC5qaRwUBU7vrRh9KS1Q2w0O6s0aoyZCUA8ZfRFCXFF6ThGLNifx5c5TlJjUUwW9Qpoxa2AYUa08Na5O1LcjZ3NYtjuF72JTOF9Qamm/qbUnZqVixd1mNrxKc42DzBNPPFEXddi+4lw4sFwNMGf3V7R7tS0ffRkLzvJLSAhxZefyinlvcxKf7ThJcZkaYG5q5cnswWHc3KaZxtUJLUz4eBebj2ZYnvu6OzCqWyCjugXR2qvx3EOv2kHmX//6F//617949tlnq9zmlVdeqZWibMrpWDW8HFgBpflqm8EBOtytBpgWt8joixCiSjnFZl799Sifbj9lWWW1a4smzBnclp7BzWzyVIG4nNmssONYJiG+rpaF6dp4ufJH4jkGtvdlTFQQfUK9rH7i7vWodpBRFG1vCmVVivPgzxVqgDkTV9HeLFSduBtxv4y+CCGuKruglPe3JPHR1gyKytTVeLsEejB7UBh9w7wlwDQSqRcK+XZPCsv3JJOcVchTt7Vlan91esfj/dowtX+wTZ82qo5qB5kXX3wRgHvvvZfw8PDLvr5ly5baq8pandmnXja9fzmU5KptBntoP0wdfWnZS0ZfhBBXlVNUysdbT/Dh1mPkFpUB0KG5G7MHtSW6vY8EmEagqNTEukNpLItJZmviOct6QG4ORsuVaUCDvWVAfavxHJmJEyeyd+/eSm15eXnMmDGD2NjYWivMapTkw+Hv1dGX05e8L57B5aMvD4CLnL8WQlxdfnEZS7ed4P0tx8guVCdthvm6cncbI4/d0QM7uxr/uhZWaNnuZP675rDlZwDgljbNGNM9kCEdm+Nkb12L1dWHav3LOHnyJEOHDsVkMqEoCu3bt79sm65dG9k9frJTCDqwAP3ajepEXgC9HbS/Sx19adVHRl+EENdUWGLi0+0nWLzlGFn56t3rg71dmDkwjCEdfNi/fx96vfwusVXZBaWcyy8muPy2Ec1c7ckuLKW5hyOjugUyuluQ3BPrGqoVZFq2bMny5cvJycnhscce44MPPqj0dQcHB8LCwuqkwIZKv3oaPid+U580bV0x+uLqrWldQgjrUFRq4oudp3h3cxLn8tQbwLb2cmFGdCh3hftj0OswmUwaVynqgtmssC0pk29ikvn14FmiWjbly0dvBtS1gD59+CZ6hXhhkABbLdUeq7w4CvPjjz8SFBRkac/Ly8Pe3h57e/var64BM3ebSJbJDc8+D2MI7g/6xjdTXAhRc8VlJr7ZnczCTYmk5agBJsjTiekDQhkeGdAorzppLFLOF7A8JoUVe1JIvVBoab9QUEpRqQlHOwNGg55bw+QP4pqo8UnXkpISpk6dysKFC1m3bh2zZs3CxcWFRYsW0a1bt7qosWFqP4xTxS3wbBMhIUYIcU0lZWZW7EnhnY0JnM5WbwLr7+HItOhQRnULxE4CjM06nVvGvCW72XYss2LirqOReyICGBMVRKcAd5nEfQNqHGRefvllfHx8UBSFefPmMX36dFxcXJg7dy7Lly+vixqFEMJqlZnMrIxN5a0NCaScV/8K93V34In+IYzpHmR1dxoW16YoCmeyi/Bv4gSAm4Oe3SfVq496hTRjTFQQt3X0s9xtWtyYGgeZo0eP8t5775GamsqpU6e4//77cXFx4Y033qiL+oQQwiqZzAo/xKkB5kSmeisSL1cHpvQL5v4eLeRDzAadzy/h+7hUlsWkcDIzn13PD8TJqMPNXs/rozoT2cKTIE+ZuFvbahxkysrKUBSFP/74g44dO+Lq6kpWVhYODo17QR4hhAB1IuePB86wYH08SRnqat6eLvY83rcN425uJZfP2hiTWWFr4jmWxSSz7mCa5f5X9kY9+5Mv0KO1euPfoZ2bYzDIsa8LNQ4yPXv2ZNq0aRw5coRJkyaRnJzM008/Tb9+/eqgPCGEsA5ms8KvB88yf3088Wl5ADRxtuOxW9vw0C2tcHGQdWBsicmssGB9PCv2pFjmPAF09HdnbPcghoX708TZXq48qwc1/pf173//myVLlhAVFcWdd95Jeno6HTt2ZM6cOXVRnxBCNGiKorD+cDrz18Vz6EwOoE7kfLRPGyb2aoWbo53GFYraUlRqwt6gR6/XYdDr+D3xHKezi/BwsuOeCH9GRwXRKcBD6zIbnRoHGQcHB0pLS1m6dCkLFy5k1apVxMbGkpeXh5OTU13UKIQQDY6iKGyOz2D+unj2p2QD4Opg5OFerZjUuw0ezhJgbIGiKBxIzeab3cms2nea9x7sRq8QLwBmRIeSW1TGoA6+MudJQzUOMm+//TY7d+7krbfeYubMmXh5eeHn58d//vMfFixYUBc1CiFEg6EoCn8kZjJv3VH2nroAgJOdgQm9WvFYnzY0dWlca2rZqqz8Er6LTWV5TDJHzuZa2tcePGsJMv3a+mhVnrhEjYPM6tWr+eqrr/D19UWn0+Hs7Mwrr7zCoEGD6qI+IYRoMLYnZTJ/XTy7TmQB4GDUM/6WlkzuG4xXI78Dsa3YnpTJZztOsO5QGqUmddEXe6Oe2zv5MSYqiFvayL3zGpoaB5mCggI8PT0B9S8TAEdHR/SyKJwQwkbFnMhi3rp4tiVlAuoH2/03tWBKv2B83OUOxNbObFYs97PalnSONQfOAtAl0IPRUUEM6+IvpwobsBoHmYiICN555x1mzZplWYnws88+o3PnzrVenBBCaCn21Hnmr09gS3wGAHYGHfd2b8GU/sE095A5gdasoKSMnw+cZVlMMlGtmvLUbe0AGN0tiLziMkZ3C6KDv7vGVYrqqHGQef7553nooYf47rvvyM/P54477iA/P5+PP/64LuoTQoh692dqNvPWxbPxSDoARr2O0VGBTO0fQmBTWdDMWimKQlzyBZbFpLB632nyissAOJVVwJxBbdHrdbRo5sw/7+qocaWiJmocZIKCgvjpp5/YvHkzqamp+Pn50a9fP1xdXeuiPiGEqDeHz+Qwf108aw+lAaDXwYiugUwfEEqLZhJgrFVWfgnf7klhWUwyCel5lvYWns6MiQpkRNdAy6klYX2ua4UmJycnbr/99tquRQghNJGQlsub6xP46cAZAHQ6uDvcn+nRobTxlj/SrN3Rs7n8d81hABzt9NzRqTmjo4Lo0dpTAowNkKUmhRCNVlJGHm9tSGDVvtOWuxIP7dKcWQNDCfFx07Y4cV2OZeSxfE8Kiel5fDA+CoAerT25vZMffUK9uTO8Oe6ySKFNkSAjhGh0Tmbm89aGRL6LTcFcHmCGdPRj5qBQ2vnJBE9rk19cxpoDZ1gWk8zuE+ct7UfP5tLWzw29Xse7D3bTsEJRlyTICCEajZTzBbyzMZHle1IwlSeYge19mDkwTJaWtzKKorD31AWW7U7mx/2nyS9R72mk16kL1Y2JCqS1l4vGVYr6IEFGCGHzzmQX8s7GRJbFJFsWOesb5s2sQWFEBDXRtjhxXQpLTYz/aKclwLRq5szoqCBGdg3Ez0PW9mlMJMgIIWxWek4RizYn8eXOU5SYzAD0CmnG7EFhdGvpqXF1orpKTWY2H81gxZ5kXhnRBU8Xe5ztjYzpHkROYRljogK5qbWnZW0z0bhIkBFC2JxzecW8tzmJz3acpLhMDTA3tfZk9qAwbpYl5q1GYnoey2OS+XZvKufyigHo0TqVh3u3BpD1XgQgQUYIYUOy8kt4f8sxPtl2gsJS9ZRD1xZNmDO4LT2Dm8lf7FYgr7iMn/afZllMCntOVkzc9XK1Z0TXQPq19dawOtEQSZARQli97MJSPt6WyJKtxy1zJsIDPZg1KIy+Yd4SYKzIjK9i2VC+orJBr6N/W2/GRAXRv50Pdga5p5+4nAQZIYTVyi0qZdmhPNas/o3cInW5+Q7N3Zk9KIzo9j4SYBq49JwivjuSR4FbJn3CfAC4OzKA4+fyGdM9iBGRAXJTTnFNEmSEEFYnr7iMT7ad4P0tx8guLAWgra8bswaFMriDn6zW2oCVmsxsPJLOst3JbI7PwGRWOFN6whJkhnZuzl1dmksIFdUmQUYIYTUKS0x8uv0Ei7ccIyu/BIAANwN/H9qJO7sESIBpwBLSclkWk8x3samcyyuxtLdrZseQTn6W5wY5hqKGJMgIIRq8olITX+w8xbubkyxXr7T2cmFa/2AClTS6dW4uIaYBWx6TzFMr9luee7s5MLJrICMjm5OTmkhERICG1Qlrp2mQMZlMTJgwgYCAAObOnXvFbX777Tdef/11kpOTad68OU8//TT9+/ev50qFEFooLjPxze5kFm5KJC1HDTBBnk5MHxDK8MgAdCjExaVrXKW4lKIo7DqexensQoZHBgLq4oMORj19w9SJu/3aemM06DGZTMSlalywsHqaBpl33nmHmJgYAgKunMZPnDjBtGnTmDdvHv369WPt2rXMnDmTtWvX4uvrW8/VCiHqS0mZmRV7UnhnYwKns4sA8PdwZFp0KKO6BVquXjGZTFqWKS5xNruIb/emsDwmmROZBXg42XF7p+Y42hnwcXck5oWBuMnNGkUd0CzIbN++nbVr1zJ48OAqt/nuu++Iiopi4MCBANxxxx2sXLmSb775hunTp9dXqUKIelJmMrNybypvbUwg5XwhAL7uDjzRP4Qx3YNwMBo0rlBcqqTMzIbDaSyLSea3+AzLDThd7A3c3smP/OIyHO3UYyYhRtQVTYJMZmYmzz//PIsWLWLp0qVVbpeYmEhYWFiltpCQEI4cOVLj16ztv9wu7s+W/yK09T5K/xoOk1lh1b7TvL0piZOZBYC6ANrf+rbhvu5BOJR/GP61L9bUx+vRkPuXllPEnW//QVZBqaXtplZNGdUtkNs7+eJsr368XK32hty/2mLrfazL/lV3n/UeZMxmM0899RQTJ06kXbt2V902Pz8fJyenSm2Ojo4UFBTU+HUPHDhQ4+/Rcr8Nia33UfqnHbOisC25iG8O5XE6V/2l5W6vY3g7V24LdsbBeIHDBy9ccz8NuY+1oSH0L7/ETMyZYm5t4YhOp0NRFFztFBRHPf1bOdG/lRP+bkYgg/hDGTXad0PoX12z9T5q2b96DzKLFy/G3t6ecePGXXNbJycnioqKKrUVFRXh4lLzW7N37twZg6H2hqVNJhMHDhyo9f02JLbeR+mfdsxmhbWH0nhzQyIJ6XkANHGy49E+rRl3cwtcHKr3q6kh97E2aN0/s1lh54ksVuxJ5ec/0ykuM9O3a3vLHcM/b1WIr7sDxutccVfr/tUHW+9jXfbv4r6vpd6DzA8//EB6ejpRUVEAlqCyfv16YmJiKm0bFhbGwYMHK7UlJibSqVOnGr+uwWCokx+iutpvQ2LrfZT+1R9FUVh/OJ156+I5fCYHADdHI4/2acPEXq2uex5FQ+pjXajv/p2+UMi3e1JYvieFU1kVI+Bhvq4UliqWWlp4udbK69n68QPb76OW/av3IPPLL79Uev7MM88AXPHy62HDhvHxxx+zZs0aBg8ezNq1a9m1axfPP/98vdQqhKgdiqKwOT6D+evi2Z+SDYCrg5GHe7ViUp82eDjJRNCGYtY3cXwfl4pSPnHXzcHIXRH+jIkKIjzQQ1bcFQ1Og1sQLzIykhdffJFhw4YRHBzMwoULef3113n++ecJCAjg7bffpnXr1lqXKYSoBkVR2Jp4jnnr4ok9dQEAZ3sDD/VsxWN92tDUxV7bAgWHTufg4+6Al6sDAJ4u9igK3NzGkzFRQdzeqTlO9rY7kiCsn+ZB5q8jMbGxsZWe9+nThz59+tRnSUKIWrA9KZP56+LZdSILAAejnvG3tGRy32DLh6bQRnZBKav2pfJNTDJ/pubw5OAwnhgQCsAjfVoz/paWtGxW87mIQmhB8yAjhLAtMSeymLcunm1JmQDYG/U80KMFf+sbLHcy1pDZrLD9WCbf7E7ml4NnKSkzA2Bn0HHhkkuom3s4VbULIRokCTJCiFoRe+o889bF83vCOUD9gLy3ewum9A+WD0eN/bT/DC+vOUzqhUJLWzs/N8ZEBXFPZACecopPWDEJMkKIG3IgJZv56+PZeES955FRr2N0VCBT+4cQ2NRZ4+oap6JSE+fyii3vv6OdntQLhbg5Grm7fOJu5wCZuCtsgwQZIcR1OXwmh/nr4ll7KA0Ag17HiMgApg0IpUUzCTBa+DM1m2UxyXwfm0pHfw++euxmQL1p41v3RTK4g6/llgFC2AoJMkKIGolPy2XB+gR+OnAGAJ0O7okIYHp0KK29ZIJofTufX8IPcaksi0nhUPnaPACnsgrILy7DxcGI0aBnWLi/hlUKUXckyAghqiUpI4+3NiSwat9pyxojd3ZpzsyBoYT4uGlbXCOUcr6AuT8fYe3BNEpM6sRde4OewR19Gds9iJ7BXhj0cupI2D4JMkKIqzqZmc9bGxL5LjbFcnfjIR39mDkolHZ+7toW18hkF5Ti4awuHujmYMfaQ2qI6dDcnbHdg7g7wp8mzjJxVzQuEmSEEFeUcr6AtzcksmJvCqbyBDOwvQ8zB4bRKcBD4+oaj2KTemfw5XtS2Zd8gZ3PD8TVwYiHsx3/vacT7Zu7y/EQjZoEGSFEJWeyC3lnYyLLYpIpNakBpm+YN7MHhRFefrNAUbcUReFAajbf7DrFd7HpFJSqE6p1Oth5LJPo9r4AjI4K0rJMIRoECTJCCADSc4pYtDmJL3eessy56B3ixaxBoXRr6alxdY2Doih8/McJlsUkc+RsrqU9oIkjo6OCGNk1kCBPuSJMiEtJkBGikTuXV8x7m5P4bMdJistXe72ptSezB4Vxc5tmGldn+0xmBR2g1+vQ6XT8uP80R87mYm/UM6SjL5EeRTw46Cbs7OTXtRBXIv8yhGiksvJLeH/LMT7ZdoLCUhMAXVs0Yc7gtvQMbiaLpdWxk5n5LI9JYcWeFF4fHU7vUC8ApvQL4Ux2IcPCA3B10BMXF4derj4SokoSZIRoZLILSvlw6zGWbD1OfokaYMIDPZg1KIy+Yd4SYOpQYYmJn/88w7KYZHYcy7K0r9qXagkyAzv4WtpNJlO91yiEtZEgI0QjkVNUypKtx/no9+PkFpcB0NHfndmDwhjQzkcCTB36MzWbL3aeYvW+0+SVv/c6Hdwa6s2YqCAGdvDRuEIhrJcEGSFsXF5xGZ/vPM77W46RXaje5bidnxszB4ZxW0dfCTD1YO3Bs3y16xQAQZ5OjOkWxMhugfg3kZtpCnGjJMgIYaMKSsr4/mg+P/30G1kFaoAJ8XFl5sBQ7ujUXOZd1IEyk5ktCRks251CmK8rswe3BWBUtyBOZRUwpnsQN7duJu+9ELVIgowQNqao1MQXO0+xaFMimfklALT2cmFGdCh3hfvLsvV14Pi5fJbHJPPt3hTScooB2HvKgRkDwzDodbRo5syb90ZqXKUQtkmCjBA2orjMxNe7klm4KZH0XPXD1MfFwJwh7RnZNQijQa9xhbaloKSMNQfOsmx3MrtOVEzc9XSxZ3hkAKOjAiU0ClEPJMgIYeVKysws35PMOxsTOZNdBEBAEyem9mtDsOEcUV0DMUiIqXX7krN5cvk+APQ6dfXjMVFBRLf3xd4o77cQ9UWCjBBWqtRk5ru9qby1MYGU84UA+Lk7MnVACGOiAjHqIC4uU+MqbUNGbjEr96Zw6EwOC8pPEfVo7UmfUC9ubtOMEV0DaO4hE3eF0IIEGSGsjMms8ENcKgs2JHAyswAAL1cHpvYP5r6bWuBoZ1C3kzVIbkiZycymoxksi0lm45F0y40z/9YvmHZ+7uj1Oj6b1EPjKoUQEmSEsBJms8KPB87w5vp4jmXkA+p8jL/1DebBm1viZG/QuELbkJSRx7KYZFbuTSWjfK4RQGSLJoyJCiKwqdzrSIiGRIKMEA2c2azw68GzzF8fT3xaHgBNnO147NY2PHRLK1wc5J9xbSkqNXHPO39YFgxs5mLPiK4BjIkKItTXTePqhBBXIr8BhWigFEVh3aE05q9P4PCZHADcHY082qcNE3q1ws3RTuMKrZuiKOw5eZ7lMSn8/fZ2eLrY42hnYFiEP2ezixjTPYgB7Xywk4nSQjRoEmSEaGAURWHz0QzmrYvnQGo2AK4ORh7u3ZpJvVvj4SQB5kak5xSxMjaVZTHJllN0bf3ceLh3awD+c08nWe1YCCsiQUaIBkJRFLYmnmPeunhiT10AwNnewISerXi0TxuauthrW6AVKzWZ2XgkneUxyWw6mmGZuOtkZ2Bol+Z0b+Vp2VZCjBDWRYKMEA3A9qRM5q+Ltyys5minZ/wtrZh8axuauTpoXJ31m/l1HD8dOGN53q1lU8ZEBTK0iz+uMsdICKsm/4KF0FDMiSzmrYtnW5K63ou9Uc8DPVrwt37B+Lg5alyddcotKuWn/Wdo7eVCjzbNABjSyY+dx7MY2S2A0d2CCPFx1bhKIURtkSAjhAZiT51n3rp4fk84B4CdQce93VswtX8Ifh4SYGpKURR2HstkWUwKaw6cobDUxMD2PpWCzJBOfjJxVwgbJEFGiHp0ICWb+evj2XgkHQCjXsfoqCCeGBBCQBNZGbamzmYXsfJwHrM3/m5ZHBCgjbcLN5eHGEACjBA2TIKMEPXg0Okc3lwfz9pDaQAY9DpGRAYwbUAoLZrJAmvX46f9Z5j21V7K5+3iYm/gzi7+jOkeSNcWTWXSrhCNhAQZIepQfFoub66PZ82BswDodHBPRADTo0Np7eWicXXW5ejZXI6fy2NIp+YAdG/dFL1OR5inkYl923JneIAsDihEIyT/6oWoA0kZeSxYn8Dq/adRykcM7uzSnJkDQwnxkRViqyunqJTV+06zLCaFfckX8HCyo19bHxztDPi4OfL7U305fewIERGBGAxyiwYhGiMJMkLUopOZ+SzYkMD3samWUx5DOvoxc1Ao7fzctS3OSpjNCjuPZ7E8Jpk1f56hqNQMqPOJbm7jSXZhqeXGmD7ujpzWslghhOYkyAhRC5KzCnhnYyIr9qZYFlsb2N6XmQND6RTgoXF11iMzr5jhi7ZxKqti4m6ojytjuwdxT2QAXrKmjhDiLyTICHEDTl8oZOGmRJbFJFNqUgNMv7bezBoYRnhQE22LswLFZSZ+jz9HdHsfdDodni72ONsbcHMwcleEP2OigggP9JCJu0KIKkmQEeI6pOcUsWhzEl/uPEWJST310TvEi1mDQunW0vMa3y0On8lhWUwy38emcr6glJVTelquNHrn/q4ENHHCyV7mvAghrk2CjBA1cC6vmHc3J/H5jpMUl6kBpkdrT2YPCrMsviauLLuwlFX7TrNsd7LlZpgAfu6OZOQWW57LqrtCiJqQICNENWTll7B4SxKfbjtJYakJUO/XM2dQGLcEN5NTH9fwr1UH+WrXKUv4szPoGNTBl9FRQdwa6o1B3wDev4uXl136WKdT/wMwm8rblb9sf3FbPRjsKrYtK656WwB714p9F+eBYrp8O5MJQ0kOlBaAofxqt9IiKMm7fNtL63fzrXicl67WU1Utjh7gUL7vohwoPH+VPhqgacuKfWcmXXm7i8/dfNX9A+RlQMG5ytuazDjlJEGaHdg7g1eI+iWzCdIOVtG/8v97tqnY9/mTkH+u6m0d3MCnvfq4tAjOxFV+v/76fc27VLwnaYcur/vSbV19wLej+rjwAqTuuWQbtS/u6ccgMQP0BmjVG+zKF788tfPq73eTluDXSX2cexZSdl/9uLe/S30NgPi1UJL7l35esr1vR/DtoD7OTIKUmKrr0NtBl9EV+9i/zPLzrTOb0ZtC0JIEmRvgc2wFunMrL//CxR+C1rdC2yHq49NxsO+rqn8IdTq447WKfWx4Sf1HUdUPVoe7IXiA+vjYZjiwgkr/eC594OAGt/+vYt8/PAHmsqpriXoYWt4CQNPTm9Ede+fSzlXe1iMQbvuv+rikAL6bfOXtLrr1KfCPUB/v+gASN1TdR99OMPCf6uPcs/DD1Kv/8hn6BjQLVh9vehlOba/6H3HrW6HPk+rj9MPw81NXrLnMbCYtp4j7sqdyqkT9xfZek8/o6XIaN6MR3SZg41/q7jgCek1XH5/YCr8+d4X3+pKaHt0AxvJJrF/eCxdOVn1sejwG3R9RHx/8Hjb+p8r3T2/nDDe9VfE67/WBouwr1FD+IPof0GWM+njn+/DHm1XX0SQIHlmvPjab4I22lb5uUszo0KEv/752Ac9SXBZAW183/tf0B7qcXYE+WYHkK9ThHwkPrVIf56bBW5FV9xFw6fEqEKE2fz8FDiyvuu6wIXDfl+rjs3/Ce724qidiwCtUffzFKEjaWPW2kQ/C3QvVxyd+h0/vvvq+nz4OzuWnIT++Hc7uv2wTA2rPzLkzYfCLauORH+HbSVXvV6eHf56veP5+P8hJrXr7wf+Fnk+oj+O+hF/+XvW2rr7wZHzF80U3g6mk6u2HL4bwe9XHuxbDltcqfdkAdAD4DfDpCFO2qV8oyYfFfareL8CD30LIQPXx1nmwZ2nV27a+FR5arT7OPQ1Lbrv6vh/7reL31Kb/qu95VTqNhFFL1Mfn4uHzEZW+bABCAXaWN8w6qP7eBFj/T/X3VFVumgx3vKo+Tt0L3zx49bpfSK8IMr8+C5mJVW/b//mKIHPyD1g1rept7d0qB5k1T0HRBUD9N2gY+M3V66pjEmRuQLPktehzrvKDYrCrCDKZibDzvaq31ekrB5l9X1/9l0+z0Iogk34EYj+relsXn8pBZv8yMBVXvX1ItCXIOOUcQ59whbB2kU/HisfmMji8quptAbpNrHicdhDif65627KiiselBZC4/ur7Ls6tvO/jW6re1tWn4nFJHpzadsXNjEAAUFpSQkd/d2YPCmPA9rfRndpX9b4Db6p4XJQDZ66yLVQOW5mJkJlQ9bYFWRWPi3Ouvq39X07RXDhl+eVzRSV5lzzOvfrPn91f7geVn1Hp6V9ntwxs25Qf+vaiS6AHul9/gRNXqaO04JInCpTmV7mpDtAp5ooGc9nVP1gv3dYm6cr/u4TeAHrjJV+nYiQIXcUH38VtjU6Xb3Pxud1fVqF2cAdTaaXNKm1/cYQK1FEI52aVtlF0OspKyzDa2aFzvmRumU4Hbs3/0q+/1GS45Ao2J0/waFF1Ha5+l/TRDjyD/7K/v2xvvGTfHoHg3a7qOtwDLumjM/h1rtxHdBQUFuDs5KyO3OoveU+8wspHNrjy+92kxSV9bApBN1e9beXOQ0DUX97Dv2x36b7d/Cs+T660z7/+ew8eoIZNyged9PZoSacof/2T1baYTCbi4uKIiIio1QWzTCYTp1e+QIC7Af2lw8+X/hC07A2h5X8xnP0TDq68fJuLz3U66P9cxQtsX3jJB/MVtm/TD4K6q09T90DSpsu3ufjczhl6XBwpKd+32VT19sHR4NMOk8lEwsYvCHPJRa/XX7kOZ0/oPEp9WlYCsZ9e8i5dYfvQQRV/jZzcrv4FU1Udrn4V719xLhz+8S/b/mX7kIEVf+Ge3AY5f1lh5NLX8AjE5N9N/dkIa4EhWQ0yhWVmNh/JYO2hNApK1PfIv4kTtwwew6DwVuovopPby4eDq6i7SYuKYey8jIogc6VfsACt+1Z8mCTvuuSD/ArvX5MWFUP7uWmQlVTltiYgLsNY8bOfugfM5irqRv0gcPWu2Hfumar7aLAHb3UU5mDqBTb//hsbj6STV1yGUr7doA5+PHVbW/X73P3B0b3iPbEEqr/WjfohcvFnxFQG2clV1mEymdmXdIbwbjepfSzIgtLCq9d98WfEVFpxHK9UBzr11IWhPAQU56pB6Yrbl39oXzxlYCqrCOJVfegYHSsel10Svi49hmYTcfv2ERERicFY/gF46a9sKz+lWVe/nxsSW+9jXfavuvuWEZkbkN5mFP4REVCdg+fXqeJcZ3XcMrX62wZ0U/+rg33ne3ZEqW4fjfYVpz2qo+UtlpGfa3Jwg4j7arDvntfexlQe5pw9KQgZyqfbT7L4tyTOF9gDAYT4uDJzYCh3dGqO/tI5HNWtGdRgcDGMVUfQTdfe5iI338pzIf7KZIKMuIrnNfkZuda+gU1H03n916McPJ2D+qvEH38PR0Z1C2R0VBBBnlXcQ8rVuyIwXYvBCJ6tq/66yYRiyKx4fulf9dfct13lkblruThnolr7NoKhBpOWjVX9RatT56XoLrnppZWHFyFqmwQZ0agVmxSW/HGCxVuOcS5P/au4tZcLM6JDuSvcv2FMQm0gzGaFzPwSvN3UYXdFUTh4Ogd7g55BHX0ZGxVErxAvec+EEPVKgoxolIrLTHy54yRvrc/gfJF6R+oWns5Mjw7lngh/jAb9NfbQeCRnFbBiTwor9qTQwtOZrx5Tz9PfGurNf+7pxNDOzWnqou05ciFE4yVBRjQqJWVmlu9J5p2NiZzJVucw+DdxZPqAUEZ2C8ROAgwARaUmfj14lmUxyfyRWHHqJq+4jOzCUjyc7DAa9Dx4c8ur7EUIIeqeBBnRKJSazHy3N5W3NiaQcl6dDOrn7sBdIQ7MvvtmnBzsrrGHxiE9t4i3NyTyQ1wqOUVllvbeIV6Mjgrkto5+lhs2CiFEQyBBRtg0k1nhh7hUFmxI4GSmejWQt5sDU/oFM7ZbAIcPHsDe2LhHYYpKTZZw4mA0sCwmmeIyMwFNnBgdFcjIroFVT9wVQgiNSZARNslsVvjxwBneXB/PsQx1vYNmLvY83jeYB29uiZO9AdPFq5YaIZNZ4feEDJbHpLA18Rxb/94fN0c7PJzseH5oe9p4udIzuFnlq7WEEKIBkiAjbIrZrPDLwbO8uT6e+DR1gbcmznZMvjWY8be0xMWhcf/In8zMt0zcvThHCGBL/DmGdlEXzxp/SyuNqhNCiJpr3L/Vhc1QFIV1h9KYvz6Bw2dyAHB3NPJonzZM6NUKN8fGOwdGURS+i03hm93J7DhWsTKwh5MdwyMDGB0VSEd/Dw0rFEKI6ydBRlg1RVHYfDSDeeviLXdUdnUw8nDv1kzq3RoPp8YZYBRF4eKi3Tqdjs93nGLPyfPodNAn1JsxUYEMbO8rE3eFEFZPgoywSoqisDXxHPPWxRN76gIAzvYGJvRsxWO3tqGJc+Nc1yQzr5jvYlNZFpPM83e04+Laso/2aU3fMG9GdgskoImTpjUKIURtkiAjrM72pEzmr4tn1wn1NImjnZ7xt7Ri8q1taObqcI3vtj1lJjO/J5zjm93JbDiSRqlJHYlZuTeV8WHqNkM6NWdIDe6QIYQQ1kKCjLAau09kMW9tPNuPqQu02Rv1PNijJY/3a4OPm+M1vtv2nMzMZ1lMMiv2pJCWU3E38y6BHoyJCmJoJ1+OHT2oYYVCCFH3JMiIBi/21HnmrYvn94RzANgZdNx3Uwum9AvBz6PxBZiLvt2TwsJN6t2vmzrbMTwykNFRgbRvrt5lujFfXi6EaDw0CTLbt29n3rx5JCUl4eTkxJAhQ3jqqadwdLz8Q+mTTz7hk08+4cKFCwQEBPDEE09w2223aVC1qG8HUrKZvz6ejUfSATDqdYyOCuKJASGNap6HoijEJl9geUwy/h5OTIsOBWB0VBD7UrIZ2z2I6PY+OBhl4q4QovGp9yCTlZXF5MmT+de//sU999zDuXPnmDRpEu+//z7Tp0+vtO1vv/3G4sWL+fzzz2nTpg2//vorM2fOZN26dQQGBtZ36aKeHDqdw/z18aw7pN7M0aDXMSIygOnRoY1qhdmM3GK+i01hWUwKienqmjjebg78rV8wRoOeIE9nPnn4Jo2rFEIIbdV7kPH09GTbtm24urqiKAoXLlyguLgYT0/Py7Y9duyY5TJSRVEwGAzY2dlhNMoZMVsUn5bLm+vjWXPgLAB6HdwdoQaY1l4uGldXP8pMZjYfzWBZTDIbj6RTZlYn7jra6bmjc3PGRAVhkNV2hRDCQpNE4OqqXhTat29f0tLSiIqKYsSIEZdtN3ToUFauXMkdd9yBwWBAp9Px2muv4efnV+PXrO35Ahf3Z8vzEOqrj8cy8nhrYxI/HjiDooBOB3d08mP6gBBCfFzrrIaGeAx3H8/ikU9jLM8jgjwY1TWQO7v4WRb1M5vN1dpXQ+xfbbP1Pkr/rJ+t97Eu+1fdfeqUi6tmaaCoqIjs7GyefPJJHBwc+PDDDyt9PTU1lTfffJNx48bRrl07Vq9ezX/+8x++/vpr2rZtW63XMJlMxMXF1UH14kadyStjxaE8tpws4uJH880BDozp6EpLD9tfyK6wzMz25CLis0p5vJu6sq6iKDy/KYuwZnYMaOVEi0bwPgghxNVERERgMFQ9B1DTIHPR/v37GT16NLt27cLDo2Kp9Mcff5yuXbvy2GOPWdomTpxI27ZteeaZZ6q174tBpnPnzld9I2rKZDJx4MCBWt9vQ1JXfUw5X8DCTcf4NjYVU/mpk4HtfJgeHUJHf/dae51r0eIYKorC3lMXWL4nhZ8OnKWgRP2LY820XrT1c6vV15KfUesn/bN+tt7HuuzfxX1fK8jU+6mlvXv38txzz7Fq1Srs7dXVV0tKSrCzs8PJqfKVKKdPn6ZTp8qreBmNRuzsav5XqsFgqJMforrab0NSW308faGQhZsSWRaTbFm0rV9bb2YNDCM8qMkN7/961ccxTM8tYuVedcXdi3fjBmjt5cLoqEB8PZzqrAb5GbV+0j/rZ+t91LJ/9R5k2rZtS1FREW+88QZz5swhIyOD//3vf4waNcoSbC4aMGAAn3/+Of3796d9+/asXbuWnTt3Mnv27PouW9yA9JwiFm5K5KtdyZSY1JNIvUO8mDUojG4tm2pcXd0rNZkZPH8LFwpKAXCyMzC0izpxt3urpuh0MnlXCCGuV70HGRcXFz788ENefvllevXqhZubG3fddRdTp04FIDIykhdffJFhw4bxxBNPYDAYmDZtGtnZ2bRs2ZKFCxfSvn37+i5bXIeM3GLe+y2Jz3ecpLhMDTA9Wnsye1AYPdo007i6upOYnsvymBQeK79lgp1Bz+2dmnP0bA5juwcxtIs/rg5y5Z0QQtQGTX6bhoSEsGTJkit+LTY21vLYaDQybdo0pk2bVl+liVqQlV/C4i1JfLrtJIWl6hyQbi2bMmdQGLcEN7PJEYjcolJ+2n+GZTHJ7C2/iaWPuyOTercG4KW7O2Jn0GtYoRBC2Cb5s1DUmgsFJXz4+3E+/uM4+eWTWMODmjB7UBi3hnrZXIBRFIXdJ87zze5k1hw4YwltBr2O/m19aN+8YvKuhBghhKgbEmTEDcspKmXJ1uN89PtxcovLAOgU4M7sQWH0b+tjcwHmoqdX7Gf5nhTL8zbeLoyNCmJ414BGeRNLIYTQggQZcd3yistY+sdx3t9yjJwiNcC083Nj1qAwBnfwtakAU1JmZuORNLzdHOjWUl2Fum9bb9YcOMOdXfwZ0z2Qri1k4q4QQtQ3CTKixgpKyvh0+0kW/5bE+fIrcUJ8XJk1MIzbO/mht6El9OPTclm2O5nvYlPJzC8hup0PH01Qg8zgDn70f94HF5m4K4QQmpHfwKLaikpNfL7jJO/9lsS5vBJAXQdl5sBQ7uzibzP3AMopKuXHferE3bjkC5Z2bzcH2jd3R1EUdDod9kY99kaZ+yKEEFqSICOuqbjMzPKdySzclEh6bjEALTydmR4dyj0R/hhtaCLrxiNpTPliL0Wl6uXiRr2OAe18GNs9iL5h3jbVVyGEsAUSZESVSsrMrE0qYOraLZzNLgIgoIkT0waEMLJboE1ciZNZYOK3+AwGtFdvRNopwINSk0KIjytjo4K4JzIAbzcHjasUQghRFQky4jKlJjPf7U3lrY0JpJwvBMDP3ZEnBoQwJirI6k+nFJeZ2HA4na93nWJrwjlcHc+z63lvHO0M+Lg5snbWrbTxcpGJu0IIYQUkyAgLk1nh+1g1wJzMLACgiaOe6QPbcn+PljjaWfd9Qo6czeGb3cl8H5tqmaQM6pVWGbnFBHk6AxDs7apViUIIIWpIgozAZFb4cf9pFmxIsNzQsJmLPZNvbU0npwv06NbSqm92ll1YyriPdrI/JdvS5uvuwIjIADo45XBHnyir7p8QQjRmEmQaMbNZ4ZeDZ3lzfTzxaXkANHG2Y/KtwTzUsyUOBh1xcXHaFnkdzGaFPafOE9VSXdfF3dFIqUnBzqBjYHtfxkQF0SfUCx2KVfZPCCFEBQkyjZCiKKw7lMb89QkcPpMDgLujkUf7tGFCr1a4OdoBYDKZtCyzxlIvFPLtnhSW70kmOauQb//Wk27lYea1UV1o7uFIM9eKibvW1j8hhBCXkyDTiCiKwuajGcxbF8+BVPU0i5uDkYd7t+bh3q3xcLLTuMKaKy4zse5QGt/sTmZr4jkURW13czByKiufbi2bAurVSEIIIWyPBJlGQFEUtiaeY966eGLL78zsbG9gYq9WPNqnDU2c7bUt8Dq9uT6epdtOcOGSibu3tGnGmO6BDOnYHCd7mfcihBC2ToKMjduWdI756+LZfeI8AI52eh66pRWP3dqm0mkWa5BdHlg8nNWRo7yiMi4UlNLcw5FR3QIZ3S2IFs2ctSxRCCFEPZMgY6N2n8hi3tp4th/LBMDeqOfBHi15vF8bq7ozs9mssC0pk2Uxyfxy8CzT+ocwLToUgPG3tKJPmDe9Q7xs5vYIQgghakaCjI3Ze+o889fF83vCOQDsDXruvSmIKf1C8POwngCTnFXAij0prNiTQuqFQkv7vksuoW7RzFlGYIQQopGTIGMjDqRkM2/dUTYdzQDUewSNjgriiQEhBDRx0ri66tt1PIsFG+L5IzHT0ubmaOSeiADGRAXRKcBdw+qEEEI0NBJkrNyh0znMXx/PukNpABj0OkZ2DWDagFDLSrUNmaIo5BWXWS75zi8us4SY3iFejI4K5LaOfla/qrAQQoi6IUHGSsWn5fLm+njWHDgLgF4H90QEMC06lNZeLhpXd23n80v4Pi6VZTEpeDgZ+fqxWwDoE+rF00PaclcXf6sIYkIIIbQlQcbKJGXksWB9Aqv3n0ZRQKeDO7v4MyM6lBCfhn2PIJNZvQx8WUwy6w6mUWIyA+Bg1JOZV0wzVweMBj1T+oVoXKkQQghrIUHGSpw4l89bGxP4PjYVc/mib7d38mPmwDDa+rlpW9w1XCgoYcnW46zYk8Lp7CJLe0d/d8Z2D2JYuL/VrmUjhBBCWxJkGrjkrALe2ZjIir0pmMoTzMD2vswaFEpH/4a7Wq3JrFguidbpdCzecoziMjMeTnYMjwxgVLdAWW1XCCHEDZMg00CdvlDIO5sSWbY7mbLyANO/rTezBoXRJbCJtsVVQVEU9qdkq6eODqWxYU5f3Bzt8HCyY/agMPybODGog69M3BVCCFFrJMg0MGk5RSzalMhXu5Itc0j6hHoxc2CY5b5BDU1WfgnfxaayPCaZI2dzLe2/HkxjVLdAACb3DdaqPCGEEDZMgkwDkZFbzHu/JfH5jpMUl6kBpkdrT2YPCqNHm2YaV3dlm46ms7x89KXUpI4a2Rv13N7Jj7FRQdzcQOsWQghhOyTIaCwrv4TFW5L4dNtJCktNAHRr2ZQ5g8LoGeKlcXVXt3BjIjEn1Xs4dQn0YHRUEMO6+FvuhSSEEELUNQkyGrlQUMKHvx/n4z+Ok1+iBpjwoCbMGRRGn1AvdLqGc++ggpIy1h46wzcxyUwbEEKfUG8AHurZis6BHozuFkQHf1lxVwghRP2TIFPPcopKWbL1OB/9fpzc4jIAOgW4M3tQGP3b+jSYAKMoCnHJF3g3JpsdqzaRV6yGrW92J1uCzF3h/twV7q9lmUIIIRo5CTL1JK+4jKV/HOf9LcfIKVIDTDs/N2YNCmNwB98GE2DO5RXz3d5UlsUkk5CeZ2lv4enMmKhARpZP3hVCCCEaAgkydaygpIxPt59k8W9JnC8oBSDUx5WZA8O4vZMfen3DCDAXfbr9JG9tSADA0U5PD397HhvYmVuCvRtcrUIIIYQEmTpSVGri8x0nee+3JM7llQDQxsuFGQNDubOLv2WxOC0dy8hj+Z4UmjjZWS6PHt0tkN/iMxgTFcjQTr4kHTlIRJtmEmKEEEI0SBJkallxmYmvdyWzcFMi6bnFgHpaZkZ0KHdH+GM06DWtL7+4jDUHzrA8JoVdJ7IA8HJ14OHerbEz6AnydOaHqb0AMJlMWpYqhBBCXJMEmVpSUmZm+Z5k3tmYyJny+wkFNHFienQII7oGYqdhgFEUhb2nzrNsdwo/7j9tuUpKr4N+bX0YExWIjLcIIYSwRhJkblCpycyKvam8tSGR1AuFAPi5O/LEgBDGRAVhb9R2BAZg76kLjHx3u+V5q2bOjI4KYmTXQPw8HDWsTAghhLgxEmSuU5nJzOYThczasJVTWQUAeLs5MLVfMPfe1EKz+wmVmsxsPprBzmOZvHBnBwC6tmhC++budPR3Z0xUEN1bNW0wV0kJIYQQN0KCzHV6/vuDrNibDUAzF3v+1i+YB29uqVmASUzPY3lMMt/uTeVcnjo3Z2S3QNo3d0en0/HTtN4yYVcIIYTNkSBznTyc7fBy1vNwnxAm9GqNs339v5V5xWX8tP803+xOZu+pC5Z2L1d7RnQNxMOp4lYBEmKEEELYIgky1+m529txR/MiIiLaYDDU/yiMyawQ/cZm0nLU0ReDXkf/tt6MiQqifzsfTScXCyGEEPVFgoyVSM8p4tu9qYyJCqSZqwMGvY7o9r7sSMpkTPcgRkQG4OMuE3eFEEI0LhJkGrCSMjMbj6SzPCaZzfEZmMwKdgYdj/RpA8ALQ9vjZGeQibtCCCEaLQkyDVBCWi7LYpJZuTeVzPwSS3tUy6a08HS2PNdiXo4QQgjRkMgnYQPz7x8P8dHW45bnXq4OjOwWwJioIIK9XTWsTAghhGh4JMhoSFEUdh7PwsnOQHhQEwAiWzTBqNcxoJ0PY6KC6NvWWybuCiGEEFWQIKOBs9lFfLs3hWUxyZzMLGBAOx+WTOgOwKAOvmx/NhpvNweNqxRCCCEaPgky9aSkzMyGw2l8E5PMlvgMzIra7upgpLmHI4qioNPpcDAa8HbTZlE9IYQQwtpIkKkH25LO8cSXsWRdMnH3ptaejIkK4o7OfjJpVwghhLhO8glaB3KKSjlyJpebWnsCEOrjRnZhKT5uDozqFsjoqCBae7loXKUQQghh/STI1BKzWWHH8UyWx6Sw5sAZHIx6dj0/EEc7A95uDqz8W086+rtjlIm7QgghRK2RIHODTl8o5Lu4Myzfk0xyVqGlvYWnM6kXCi2XTF+8KkkIIYQQtUeCzHXKKy7j31uy2LfiN5TyibtuDkbuivBnTFQQ4YEesuKuEEIIUcckyFwnF3sDF4rMKArc3EaduHt7p+Y42csVR0IIIUR9kSBznXQ6HY91c+fmiE608XHTuhwhhBCiUZKZpzegbTN7WjZzvvaGQgghhKgTEmSEEEIIYbUkyAghhBDCamkSZLZv387o0aPp2rUrvXr14t///jdFRUVX3HbXrl2MHj2ayMhI+vbty+LFi+u5WiGEEEI0VPUeZLKyspg8eTL33XcfMTExfPfdd+zatYv333//sm2TkpJ47LHHuP/++9m7dy+LFy9myZIl/PLLL/VdthBCCCEaoHq/asnT05Nt27bh6uqKoihcuHCB4uJiPD09L9v2yy+/JDo6muHDhwPQrl07vv76a1xdXeu7bCGEEEI0QJpcfn0xiPTt25e0tDSioqIYMWLEZdvt37+fnj17Mnv2bP744w88PT2ZMGECY8eOrfFrmkymG677Svur7f02JLbeR+mf9bP1Pkr/rJ+t97Eu+1fdfeoU5eK6tPWvqKiI7OxsnnzySRwcHPjwww8rfX3w4MFkZGQwf/58evfuTWxsLJMnT+bll19myJAh1XoNk8lEXFxcHVQvhBBCiLoWERGBwVD1YrOaLojn6OiIo6MjTz31FKNHjyY7OxsPDw/L1+3t7YmOjqZfv34AdO/enbvvvpuff/652kHmos6dO1/1jagpk8nEgQMHan2/DYmt91H6Z/1svY/SP+tn632sy/5d3Pe11HuQ2bt3L8899xyrVq3C3t4egJKSEuzs7HBycqq0bXBwMCUlJZXaTCYT1zOIZDAY6uSHqK7225DYeh+lf9bP1vso/bN+tt5HLftX71cttW3blqKiIt544w1KSkpITU3lf//7H6NGjbIEm4vuvfdeNmzYwA8//ICiKOzevZvVq1dz991313fZQgghhGiA6j3IuLi48OGHH5KQkECvXr0YN24cPXv25LnnngMgMjKSVatWAXDLLbewaNEiPv30U7p168azzz7L3//+d6Kjo+u7bCGEEEI0QJrMkQkJCWHJkiVX/FpsbGyl53379qVv3771UZYQQgghrIzcokAIIYQQVkvTq5bqw8WJwbKOTM3Zeh+lf9bP1vso/bN+tt7H+lhH5loX+Gi6jkx9KCkpqdblW0IIIYRoeDp37nzZxUCXsvkgYzabKSsrQ6/Xo9PptC5HCCGEENWgKApmsxmj0YheX/VMGJsPMkIIIYSwXTLZVwghhBBWS4KMEEIIIayWBBkhhBBCWC0JMkIIIYSwWhJkhBBCCGG1JMgIIYQQwmpJkBFCCCGE1ZIgU00pKSk88cQT3HzzzfTo0YMpU6aQnJxc5fb79u1j9OjRREZGMmDAAJYvX16P1d6YwsJCxo4dy8qVK6+63T//+U86depEZGSk5b9vvvmmnqq8ftXtn7Udw4KCAp599ll69OhBt27dePrpp8nPz69ye2s5fpmZmUyZMoWoqCh69OjBf//7X8rKyq647W+//cZdd91FREQEt99+O5s2barnamuuJv175JFH6Ny5c6VjtmXLlnqu+PpkZWUxaNAgdu7cWeU21nj8LlWdPlrjMTxy5AgTJ07kpptuolevXjz99NNkZWVdcVtNjqEiqmXYsGHKc889p+Tn5yt5eXnKs88+q9x5551X3PbChQvKTTfdpHz++edKaWmpsm3bNiUyMlLZt29fPVddc/Hx8crw4cOVsLAw5dtvv73qtsOHD1dWrlxZT5XVjur2zxqP4TPPPKM89NBDyvnz55Vz584pDz74oPKvf/2ryu2t5fg9+OCDypw5c5SCggLl1KlTytChQ5UPPvjgsu2OHz+udO7cWVm3bp1SWlqq/PTTT0qXLl2Us2fPalB19VW3f4qiKD169FB27txZzxXeuJiYGGXgwIFKWFiYsmPHjituY63H76Lq9FFRrO8YFhYWKr169VIWLFigFBcXK1lZWcqjjz6qTJ48+bJttTqGMiJTDdnZ2Xh5eTFjxgycnZ1xcXFh/PjxxMfHk52dfdn2a9eupUmTJjzwwAMYjUZuueUW7rrrLr744gsNqq++7du389BDDzF8+HD8/f2vum1JSQnx8fF06tSpnqq7cTXpn7Udw8LCQlavXs306dNp0qQJzZo148knn2TlypUUFhZetr21HL+TJ0+ya9cunnrqKZycnAgKCmLKlClXPA7fffcdUVFRDBw4EKPRyB133EH37t0b5CjTRTXpX3JyMtnZ2XTo0EGDSq/fd999x5NPPsmsWbOuuZ21Hb+LqttHazyGp0+fpl27dkydOhV7e3uaNm3K2LFj2b1792XbanUMbf7u19VVVFREWlraFb/m7e3NRx99VKnt119/JSAgAA8Pj8u2T0hIICwsrFJbSEgIK1asqL2Cr8O1+tiuXTs2bdqEg4MDH3/88VX3deTIEcrKynjrrbfYs2cPbm5ujBw5kkceeeSq98SoS7XZv4Z4DK/Wv8LCQkpLSyvVHBwcTFFRESdOnKB9+/aVtm+Ix+9KEhISaNKkCb6+vpa24OBgTp8+TU5ODu7u7pb2xMTEKx6zI0eO1Fu9NVWT/h04cAAXFxdmzZrFgQMH8PLyYsKECYwaNUqL0qutd+/e3HXXXRiNxqt+0Fvj8buoun20xmPYpk0bPvzww0ptv/76Kx07drxsW62OoQSZcvv27WP8+PFX/NrChQsZOHCg5flXX33FkiVLePfdd6+4fX5+Pk5OTpXaHB0dKSgoqL2Cr0NN+ngtubm53HTTTYwbN4558+Zx+PBhpk6dil6v55FHHqmtkmukNvvXEI/h1fo3Y8YMAJydnS1tF+u/0jyZhnj8ruRKx+Hi84KCgkof9A3xmF1LTfpXUlJCREQEs2bNIjQ0lJ07dzJt2jRcXFy4/fbb67XumvD29q7WdtZ4/C6qbh+t9RhepCgKb775Jps2beLzzz+/7OtaHUMJMuV69OjB0aNHr7pNSUkJr7zyCmvWrGHx4sXcfPPNV9zOycmJ3NzcSm1FRUW4uLjUWr3Xozp9rK5evXrRq1cvy/MuXbrw0EMPsWbNGs0+CGuzfw3xGF6tf4cOHWLBggUUFhZaarx4SsnV1fWy7Rvi8bsSZ2fny06NXXz+12Ph5OREUVFRpTatj9m11KR/99xzD/fcc4/lee/evbnnnnv4+eefreJD8Fqs8fjVlDUfw7y8PJ599lkOHjzI559/Ttu2bS/bRqtj2HDGkBu4rKwsxo0bR1xcHCtWrKgyxACEhYWRkJBQqS0xMZHQ0NC6LrPerF+/nq+//rpSW0lJCY6OjhpVVLus7Ri2bt0aOzs7EhMTLW1JSUnY2dnRqlWry7a3luMXGhrKhQsXOHfunKUtKSkJPz8/3NzcKm1rbccMata/FStW8PPPP1dqKykpwcHBoV5qrWvWePxqylqP4alTpxg5ciR5eXmsWLHiiiEGtDuGEmSqobS0lEceeQRXV1e++uorgoKCrrr9oEGDOHfuHEuXLqW0tJQdO3awevVqRo4cWU8V1z1FUXjllVfYvn07iqIQGxvLp59+ytixY7UurVZY2zF0cnLi9ttv5/XXXycrK4usrCxef/117rzzziuGE2s5fq1ataJbt268/PLL5OXlkZyczKJFi644p2DYsGHs2rWLNWvWUFZWxpo1a9i1axd33323BpVXT036l5eXx7///W8OHTqE2Wxm8+bN/Pjjjw3umF0vazx+NWWNxzA7O5uHHnqIrl278tFHH+Hp6Vnltpodwzq9JspG/Prrr0pYWJjSuXNnJSIiotJ/qampiqIoyh133KG8++67lu/Zv3+/MnbsWCUyMlKJjo6+5qXMDU3//v0vq/mvffzqq6+UwYMHK+Hh4Up0dLTy+eef13eZ1606/bO2Y5ibm6u88MILSs+ePZXu3bsrzzzzjJKfn2/5urUev4yMDGXatGnKTTfdpNx8883K3LlzlbKyMkVRFCUiIkL54YcfLNtu2bJFGTZsmBIREaEMHTpU2bx5s1ZlV1t1+2c2m5WFCxcq/fv3V7p06aIMHTpU+fnnn7Usvcb+emmyLRy/v7paH63xGC5ZskQJCwtTwsPDL/v8U5SGcQx1iqIodRuVhBBCCCHqhpxaEkIIIYTVkiAjhBBCCKslQUYIIYQQVkuCjBBCCCGslgQZIYQQQlgtCTJCCCGEsFoSZIQQQghhtSTICCEajeLiYs6ePat1GUKIWiRBRghRr1JSUmjbti0pKSn1/tr3338/27Ztq/fXFULUHQkyQohG4/z581qXIISoZRJkhBCa+P777xk4cCA9e/bkhRdeIC8vD4Bt27YxatQooqKiGDp0KKtWrbJ8T15eHi+88AKDBw8mIiKCPn368N5771m+PmDAAFauXGl5vnPnTsudeh9++GFOnz7NP//5T1566SUmTZrE//3f/1WqafLkySxYsKAuuy2EqGUSZIQQmoiJiWHZsmWsWrWK+Ph4Xn75ZY4cOcLf/vY3HnvsMXbu3Mm///1vXn75ZX7//XcAXn/9dVJSUlixYgWxsbG88MILzJ8/n5MnT17z9ZYsWYK/vz8vvvgi//jHPxg5ciS//PILJSUlAJw7d44//viDESNG1Gm/hRC1S4KMEEITzzzzDJ6ennh5eTF9+nRWr17N119/TXR0NIMHD8ZgMNC1a1fGjBnDF198AcC0adN48803cXV15ezZszg4OACQnp5e49cfOHAger2ejRs3ArB69WoiIyMJCgqqvU4KIeqcUesChBCNU2BgoOVx8+bNKSkpISUlhZ07dxIVFWX5mslkokWLFgBkZmby3//+l0OHDhEYGEinTp0AMJvNNX59e3t77rzzTn744QeGDBnCd999x8MPP3yDvRJC1DcJMkIITaSlpeHq6gqoVzI5OzvTvHlzhg8fzksvvWTZLj09HUVRAJgxYwYDBgzgo48+wmg0cv78eZYtW2bZVq/XU1paanl+rcm9I0eOZMyYMcTGxpKSksJtt91Wm10UQtQDObUkhNDEa6+9RnZ2NmfPnmXBggWMHTuWUf/frh2qKgzFcRz/XQTRBxAfQNOKKCytmcRg2BYmDN9B3BOIYJEZbQafQTSt+QhiMBkFQcMQTN6brmAVcRz8ftpWzv+0L+cc39dyudRms9H9ftfhcFAYhprP55KkNE1VKBSUy+V0Pp81Go0k6REvlUpFSZLodrvpdDppsVg8rZnP55Wm6ePbsixVq1UNh0O1220Vi8UP7R7AuxAyADJRr9fVarXkeZ5s21a/31etVlMcx4rjWLZtKwxDNZtNDQYDSdJ4PNZqtVKj0ZDruiqXy7IsS/v9XpIURZGu16scx1Gv11On03la0/d9TadTRVH0+Oe6rna7nTzP+9zmAbzNz+//mS0AfKEkSTSZTLRer7MeBcALeCMD4CtdLhcdj0fNZjN1u92sxwHwIq6WAHyl7XarIAhUKpUUBEHW4wB4EVdLAADAWJzIAAAAYxEyAADAWIQMAAAwFiEDAACMRcgAAABjETIAAMBYhAwAADAWIQMAAIxFyAAAAGP9Af4wWN2cMoCcAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABCkAAAHqCAYAAAApshTaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAACXSklEQVR4nOzdd3QU9f7/8efupndCSUgIpNF7lx6Ccq00e0FREbEAKt/f1Qtee+Heay8URWzXchugYAEVQ1cEifSShFASQiCB9Lo7vz8CKygggSSz2bwe53hMZiez7/duwsy8dubzsRiGYSAiIiIiIiIiYjKr2QWIiIiIiIiIiIBCChERERERERFxEQopRERERERERMQlKKQQEREREREREZegkEJEREREREREXIJCChERERERERFxCQopRERERERERMQlKKQQEREREREREZegkEJEREREREREXIJCChE5Jz/++CNt27Y1u4wa8cgjj/DII4+YXYaIiLg5s/edKSkpXHrppXTv3p0XX3yxTp87MTGR+fPn1+lzioh78DC7ABERERERqXnffPMNPj4+rF+/HpvNZnY5IiLnRFdSiNRj27Zt48Ybb6R79+6MHDmSWbNmkZiY6Hx8zZo1XHPNNfTq1YsrrriCzz//3PnYI488wmOPPcbEiRPp3r07w4YN44MPPnA+np2dzcSJE+nRowfDhg1j9erVpzz3vn37mDhxIn379mXo0KG8/PLLlJeXAzB//nzGjBnDHXfcQa9evVi0aNHvau/evftp/3vsscdO22tiYiLvvvsuI0aMoGvXrtx4441s3bqVu+66i+7du3P55ZezadMmAAzD4K233uKqq66iV69e9O7dm6lTp1JaWnrabX/xxRdcddVV9OzZkzFjxrBq1apzfAdERKS+aSj7zhkzZvDmm2+yc+dOevXqxZ49eygsLOSpp55iyJAh9OvXjwcffJAjR44AcODAAdq2bcvChQsZOnQo3bp14y9/+Qvr169nxIgRdO/endtuu43c3FwACgsLefTRRxk+fDjdunVj0KBBzJ49+7SveXl5Oa+++irDhg2jT58+3HXXXezdu/dc3zIRaWgMEamXCgoKjH79+hmvvPKKUVZWZuzYscNISEgwhg4dahiGYWzfvt3o0qWLsWTJEqOystLYsGGD0bdvX2PFihWGYRjGww8/bHTs2NFYtWqVUVFRYXzyySdG+/btjaysLMMwDOOmm24y7rvvPqOgoMDIzMw0Ro4cabRp08YwDMMoKioyhg4darzwwgtGaWmpkZmZaVxzzTXGCy+8YBiGYfzvf/8z2rRpY8yfP98oKyszSkpKLrjfoUOHGpdddplx8OBBo6CgwBg+fLjRvXt34+effzbKysqMKVOmGGPHjjUMwzC++OILY8CAAcaePXsMwzCMlJQUo0+fPsa///1vZ+8PP/ywYRiGkZSUZPTs2dNYt26dUVlZaSxbtszo1q2bsWvXrguuWUREXEtD23e+9tprxi233OL8ftKkScYdd9xhHDlyxCgsLDQeffRR4/rrrzccDoexf/9+o02bNsYDDzxgFBcXGzt37jTat29vjBgxwsjKyjJycnKMSy65xHj99dcNwzCMxx9/3LjtttuMvLw8w+FwGF9//bXRpk0bIz093TCMqv32//73P8MwDGPGjBnGqFGjjH379hmlpaXG66+/biQmJhqlpaUX3KOIuB9dSSFSTy1btgybzcakSZPw8vKibdu2jB8/3vn4p59+yrBhwxg+fDg2m40ePXpw3XXX8dFHHznX6du3LwMGDMDDw4Orr74au93Ovn37yMjIYP369fzf//0fAQEBNG/enPvvv9/5c0lJSZSXl/PQQw/h7e1N8+bNmTJlyinb9vT0ZOTIkXh5eeHj41MjPV999dWEh4cTEBBAly5d6Nu3L927d8fLy4uBAweSkZEBwODBg/nvf/9LdHQ0ubm5HD16lJCQEA4dOvS7bf7zn//kxhtvpHfv3thsNoYOHUpiYiKffvppjdQsIiKuoyHuO0/IyclhyZIlTJ8+ncaNG+Pv78+0adPYvHkzW7duda53xx134OvrS5s2bWjatCmjR48mLCyM0NBQunXr5tzXTpo0iVdeeYWAgACysrLw9vYGqq4mOZlhGHz66ac89NBDREVF4e3tzX333UdFRQVJSUk12qOIuAeNSSFST2VlZREREYHV+mvWGBUV5fw6IyODH374gV69ejmX2e12WrZs6fy+adOmzq89PT0BcDgczpP5iIgI5+Mn/1xGRga5ubn07t3bucwwDCoqKsjJyXFu++Tafuvkuk525ZVX8sQTT5z2sZCQEOfXNpuN4OBg5/dWqxXDMJy1vPzyy3z//feEhobSvn17KioqnI+fLCMjg3Xr1vHJJ584l9ntdi666KIz1i4iIvVTQ9x3nvz8ANddd90py202GwcOHHDuY3+7rw0KCnJ+f/K+Nicnh2effZZt27bRokULOnXqBFS9FifLzc2luLiYKVOmnNJbRUWFsyYRkZMppBCppyIiIsjMzMQwDCwWCwCZmZnOx8PDwxk9ejRPPfWUc1l2dvZpT9R/Kzw8HID9+/cTFxcHVB3Ynfx4y5Yt+frrr53LCgsLycnJITQ0FMBZ05msX7/+D+v4rT/a5gkvvPACmZmZLFu2jICAAACuuuqq064bHh7OqFGjmDBhgnNZZmZmjX+CJSIi5muI+84TwsLCAPjqq69OCVpSUlKIiori8OHD51TDCVOmTCExMZF33nkHDw8Pjh49yr///e/frdeoUSO8vb2ZN28e3bp1cy5PS0tz1iQicjLd7iFSTyUmJmIYBrNnz6a8vJy0tDTeeecd5+PXXHMNixcvZtWqVTgcDtLT07nllluYN2/eH247IiKCgQMH8vzzz5OXl8fhw4d54403nI8PHTqUoqIi5s6dS3l5Ofn5+Tz88MM8+OCD53xwU5sKCwvx9vbGZrNRVlbGvHnz2LVrFxUVFb9b97rrruODDz5wDrq5efNmxowZw+LFi+u6bBERqWUNed8ZFhZGQkICzz77LEePHqWiooJZs2ZxzTXXkJ+fX+3tFRQU4OPjg81mIzc3l2eeeQbgd/taq9XKNddcw4svvkhWVhYOh4MFCxZw5ZVXavBMETkthRQi9ZSfnx8zZ87ku+++o0+fPjz00EMMGDDAeelp165deemll3jppZfo3bs3t9xyC4mJiUydOvWctv/iiy8SGBjI0KFDufrqq+nfv7/zsYCAAN577z1+/PFHBg8ezMUXX4zVamXWrFm10mt1PfDAA5SWltK/f38SExNJTk5m5MiR7Nq163frXnrppTz00ENMmzaNHj16MGXKFMaNG8fYsWNNqFxERGpTQ993/v3vfycoKIhRo0Zx0UUXsXz5cubOnXvKlRXn6vnnn+fLL7+kR48ejBkzhrCwMDp06HDafe3DDz9M165duemmm+jVqxfvvfcer732Gh06dKiJtkTEzViMc7l+TURcztGjR0lLS6Nnz57OZR9++CFffPGFBn0UERE5De07RURcn66kEKmn7HY7t912G8uXLweq5jf/+OOPGTp0qMmViYiIuCbtO0VEXJ+upBCpx7799lteffVVDhw4QFBQEKNHj+b+++/Hw0Nj4oqIiJyO9p0iIq5NIYWIiIiIiIiIuATd7iEiIiIiIiIiLkEhhYiIiIiIiIi4BIUUIiIiIiIiIuIS3D6kMAwDu92Oht4QERG5MNqnioiISG1z+5DC4XCQnJyMw+Gose1t2rSpxrZnNvXjutypF3CvftypF1A/rszVetE+9ezUj+typ17Avfpxp15A/bgyd+rF3bl9SFHTDMOgoqLCbT5FUj+uy516Affqx516AfXjytypl9Nxt/7Uj+typ17Avfpxp15A/bgyd+rF3SmkEBERERERERGXoJBCRERERERERFyCQgoRERERERERcQkKKURERERERETEJSikEBERERERERGXoJBCRERERERERFyCQgoRERERERERcQkKKURERERERETEJSikEBERERERERGXoJBCRERERERERFyCQgoRERERERERcQkKKURERERERETEJSikEBERERERERGXoJBCRERERERERFyCQgoRERERERERcQkKKURERFxUfkmF2SWIiIiI1CmFFCIiIi5o7so0hrywnIJyh9mliIiIiNQZhRQiIiIuorTC7vy6d3Qo+aWVbDxYZmJFIiIiInXLw+wCREREGrrNB/J4bdluDuaVsOj+gVgsFrpGhbDsocEc3b/L7PJERERE6oxCChEREZNs3HeU15elsGxHNgAWC2zJyKdzi2AAWjX24+h+MysUERERqVsKKUREROrYT+m5vPbdblbuPgKA1QKjukVy79B44psFmFydiIiIiHkUUoiIiNShCR+sZ+m2QwB4WC2M6RHJvQnxRDfxN7kyEREREfMppBAREalFhmFQ6TDwtFWNVd0mLJDvd2ZzTc8o7k2IIyrUz+QKRURERFyHQgoREZFaYBgGSTsP8+p3u0lo25QHLm4DwF2DYrmpb0siQnxNrlBERETE9SikEBERqUGGYfDNtkO8viyFzRl5ABzMK+H+ofF42KwE+3kS7OdpcpUiIiIirkkhhYiISA1wOAy+3prF68tS2H4wHwBfTxtj+7Vi/KAYPI7f7iEiIiIiZ6aQQkRE5AJl5ZVy67wf2XWoEAB/Lxu39Y/mzoExNA7wNrk6ERERkfpDIYWIiMh5cDgMrFYLAM0CvbFgIdDHg9sHxHDHgGhC/LxMrlBERESk/jH12lO73c7YsWN55JFHzrjOunXruPbaa+nevTtDhgxhzpw5dVihiIjIqSrsDv79034SX0xiy/ExJ6xWC6/d2J1VDyfy0CVtFFCIiIiInCdTQ4o33niD9evXn/Hx1NRUJkyYwE033cTPP//MnDlzmDdvHl9//XUdVikiIgJllXY++nEvCf9I4s//20R6TjHzVu9xPt42PJBgXw2IKSIiInIhTLvdY+3atSxdupThw4efcZ2PP/6YYcOGMXr0aADatWvHp59+SkBAQF2VKSIiDVxphZ1//bSf2ctTOZhXCkCTAG/uHhzLzRe1NLk6EREREfdiSkiRk5PD9OnTmTlzJu+9994Z19u0aRP9+/fnoYceYvXq1YSGhjJu3Diuv/76aj+n3W6/gIp/v52a2p7Z1I/rcqdewL36cadeQP2czcrdR/jz/zaTXVAGQFigNxMGx3BD7yh8PG019jxnUlvvjc1mu6Cf1z719NSP63KnXsC9+nGnXkD9uDJX3afK71kMwzDq8gkdDgfjx49n6NChp4xHMWPGjN+tO3z4cA4fPszLL7/MwIED2bhxI3fffTfPPfccl1566Tk9n91uJzk5uSZbEBERN2YYBhZL1YCYmQWVTPn6CKG+Vka3CyAxxhcvm8XkCi9cz549z+vntE8VERE51fnuU+XM6vxKijlz5uDl5cXYsWP/cF0vLy+GDRtGQkICAL1792bkyJF89dVX5xxSnNC5c+caSbnsdjubN2+use2ZTf24LnfqBdyrH3fqBdTPCQWllfzzx718uz2bf93VFw+blW5AcEQOvVs1wsuj7odxctX3RvvU01M/rsudegH36sedegH148rcqRd3V+chxWeffUZ2dja9evUCoLS06v7eb7/99neDaMbFxVFeXn7KMrvdzvlc/GGz2Wr0l7Gmt2c29eO63KkXcK9+3KkXaLj95JVU8N7qdOat3kNeSQUAS7cf5qquEQAMbtOsVus8F6723mifenbqx3W5Uy/gXv24Uy+gflyZO/Xiruo8pPjtzBxnu93jhhtuYPz48Xz22WeMGDGC9evXs2jRIl544YU6qVVERNzXseJy5q3aw7ur0ykoqwQgtqk/kxLjuaxTuMnViYiIiDRMps3ucSbdu3fnySefZMSIEfTr14+ZM2fy2muv8eSTTxIaGsrDDz/MsGHDzC5TRETqsbdWpPLqt7spKq8aPKtNWAD3J7bmis7NsVnr/5gTIiIiIvWV6SHFb6+g2Lhx4ynfDxkyhCFDhtRlSSIi4uasFgtF5XbaNw9icmI8f+oYjlXhhIiIiIjpTA8pREREalNWXimzl6fi42njkcvaAXBT35a0auzPxe2bOWfyEBERERHzKaQQERG3lHmshLdWpvOvn/ZTbnfg7WHlrkExNA7wxs/Lg0s6hJldooiIiIj8hkIKERFxK/tzi5m1Po/l81dQYa+aDapPdCiTh7Um1N/L5OpERERE5GwUUoiIiFsoq7QzfcEWFmzMwO6oCif6xzVm8rDWXBTb2OTqRERERORcKKQQERG34O1hY19uMXaHQbcwL/4ysjt9Y5uYXZaIiIiIVINCChERqZd2ZhXw+rLd3NS3Jf3jqsKIv17RgfLKSshJp1urRiZXKCIiIiLVpZBCRETqla2Zebz+XQpfb80CIKew3BlSdG4RjN1uJznHzApFRERE5HwppBARkXph04FjvPZdCt9uPwSAxQKXd27O/UPjTa5MRERERGqKQgoREXFp6UeKeGLRVpJ2HgbAaoGrukZw/9B4WocFmlydiIiIiNQkhRQiIuLSfL1srEnNwWa1MKpbJPcNjSO2aYDZZYmIiIhILVBIISIiLsMwDNam5vDB2r28fH03fL1shAX58I9rutAtKoRWjf3NLlFEREREapFCChERMZ1hGKzYfYTXvtvNhr1HAei9bh93DowBYGS3SDPLExEREZE6opBCRERMYxgGy3Zk89qyFH7ZfwwALw8rN/aO4rJO4eYWJyIiIiJ1TiGFiIiYYtXuIzz/1Xa2ZuYD4ONp5ea+rbh7cCzNgnxMrk5EREREzKCQQkRETHEwr4Stmfn4edkY268Vdw2KpUmAt9lliYiIiIiJFFKIiEitszsMFm/KJCW7kKnD2wIwqnsk2QVl3NinJaH+XiZXKCIiIiKuQCGFiIjUmkq7g4XJmcz8PoW0I0VYLTCmRwtimvjjabNy39B4s0sUEREREReikEJERGpceaWDBRsP8Ob3qezLLQYgxM+T8QNjaBKgqyZERERE5PQUUoiISI0xDIOP1+1j5vepZBwrAaCxvxd3DY7llotaEeCt3Y6IiIiInJmOFkVEpMZYLBaW7zxMxrESmgZ6c/fgWG7q2xI/L+1uREREROSP6ahRRETOW0m5nY9+3Etc0wCGtmsGwJSLW9M/rjE39GmJj6fN5ApFREREpD5RSCEiItVWVFbJhz/sZe7KNI4UltMuPJAhbZpitVroGBFMx4hgs0sUERERkXpIIYWIiJyz/NIKPliTzjur9nC0uAKAqFBfxvWPxjC5NhERERGp/xRSiIjIHyosq2TuyjTmrdpDfmklADFN/LlvaDwju0XgabOaXKGIiIiIuAOFFCIi8ofsDoN3Vu6hoKyS+GYBTEqM54rOzfFQOCEiIiIiNUghhYiI/M6RwjLmrdrDhMGxhPh5EezryV8ub0+QrweXdWqOzWoxu0QRERERcUMKKURExCk7v5Q5K9L46Me9lFY48LBZeeiSNgDc1LelydWJiIiIiLtTSCEiIuQU23li0Tb+tf4A5ZUOALpGhdCzVSOTKxMRERGRhkQhhYhIA5ZxrIQ3l+3m3+sPczyboGerRkwe1prBrZtgsei2DhERERGpOwopREQasK0ZeXy8bj8AfWMaMWVYG/rFNVY4ISIiIiKmUEghItKApB0uZNmObMYPigXgkg5h3NQninZ+Rdx8SR9sNpvJFYqIiIhIQ6aQQkSkAdh9qIA3vk9h0S+ZOAzoG9OYzi2CsVgsPD2yI8nJyWaXKCIiIiKikEJExJ1tP5jPG8tS+HLLQQyjatnF7Zvh42k1tzARERERkdNQSCEi4oa2ZOTx+rLdLNl6yLns0o7h3J8YT6fIYBMrExERERE5M4UUIiJu6P016SzZegiLBa7o3Jz7E+NpFx5kdlkiIiIiImelkEJExA2sT8+lsKyShLbNALhvaDyVDoP7hsYR3yzQ5OpERERERM6NQgoRkXrsh7QcXvtuN2tSc2jRyJfv/y8BT5uV6Cb+vHx9N7PLExERERGpFoUUIiL1jGEYrE7J4bVlu1m3JxcAD6uFgfFNKC63E+yrQTFFREREpH5SSCEiUk8YhsHyXYd57bvd/LzvGABeNivX9W7BxCFxtGjkZ26BIiIiIiIXSCGFiEg9UW538PD/NnEovwxvDys39mnJ3UNiaR7sa3ZpIiIiIiI1QiGFiIiLcjgMlmzNolvLEJoH++LtYWPysNbsOVzEhMGxNAvyMbtEEREREZEapZBCRMTF2B0GX2w+yBvLdrPrUCG39WvFkyM7AXBz31YmVyciIiIiUnsUUoiIuIhKu4NFmzJ5fVkKaYeLAAj09qBpoLfJlYmIiIiI1A2FFCIiJquwO1iwMYOZ36eQnlMMQLCvJ3cMiGHcgGiCfT1NrlBEREREpG4opBARMdmmA8f48383AdDIz5Pxg2K5tV8rAn0UToiIiIhIw6KQQkSkjpVW2Plm2yGu7NIci8VCz1ahXNGlOV0ig7nlolb4e+ufZhERERFpmHQkLCJSR0or7Hyybh+zl6dyKL+MRn5eDGzdBIA3b+phcnUiIiIiIuZTSCEiUsuKyyv56Id9zFmRxpHCMgCaB/tQVF5pcmUiIiIiIq5FIYWISC0pLKvkg7XpzF25h9yicgAiQ3y5d2gc1/RsgbeHzeQKRURERERci0IKEZFaMvP7FGYmpQLQMtSP+4fGM7pHJJ42q8mViYiIiIi4JoUUIiI15FhxObsOFdInJhSAcQOiSdp5mPGDYhjRNQIPhRMiIiIiImelkEJE5ALlFpUzd2UaH6zdi5eHlVUPD8XPy4NmgT58MXkgFovF7BJFREREROoFhRQiIufpSGEZ76zeyz9/2EtxuR2Ado0COZhXSlzTAAAFFCIiIiIi1aCQQkSkmg7ll/Jucj7fLlxOaYUDgE6RQUxObM3F7cOwWhVMiIiIiIicD4UUIiLVYBgGd76/ge1ZxQB0iwphyrDWJLRtqqsmREREREQukEIKEZE/sD+3GIsFWjTyw2KxcOfAaOZ+v4NHrurKkLbNFE6IiIiIiNQQhRQiImeQfqSImUkpzP85g8s7N+e1G7sDMKpbBNFk0711EwUUIiIiIiI1SCGFiMhvpB4u5M1lKSxMzsBhVC3LK6mg0u7Aw2bFYrEonBARERERqQUKKUREjtt1qIA3lqWwaFMmxvFwYmjbpkwa1poeLRuZW5yIiIiISAOgkEJEBMg8VsKlr6xwXjlxSYcwJie2pnOLYHMLExERERFpQBRSiEiDtTUzj3bhQdisFiJCfLm0UzgA9w9tTYeIIJOrExERERFpeBRSiEiD8/O+o7z+3W6+33mYN27qzpVdIgB47YbueNisJlcnIiIiItJwKaQQkQbjp/RcXvtuNyt3HwHAaoHdhwqdjyugEBERERExl0IKEXFrhmGwNi2H177bzQ9puQB4WC2M7h7JfUPjiW7ib3KFIiIiIiJygqkfG9rtdsaOHcsjjzzyh+vu2rWLrl278uOPP9ZBZSLiLv6z4QA3vf0jP6Tl4mmzcGOflnz/fwn849quCihERERERFyMqVdSvPHGG6xfv57IyMizrldSUsLUqVMpLS2to8pEpL4yDIO0I0XENQ0A4LJO4fxjyU4u6xTOxCFxRIT4mlyhiIiIiIiciWkhxdq1a1m6dCnDhw//w3WffPJJLr74Ynbt2lUHlYlIfWQYBt9sO8Rry3aTdriIVQ8nEurvRaCPJyv/PBQfT5vZJYqIiIiIyB8wJaTIyclh+vTpzJw5k/fee++s6y5cuJC9e/fy7LPPMnPmzPN+Trvdft4/e7rt1NT2zKZ+XJc79QK114/DYbBk2yHe+D6VHVkFAPh62kjel8uQNk0B8LTW7PPqvXFt7tRPbfVis11YaKd96umpH9flTr2Ae/XjTr2A+nFlrrpPld+zGIZh1OUTOhwOxo8fz9ChQ08Zj2LGjBm/Wzc1NZU77riDTz75hIiICNq2bcsHH3xA3759z/n57HY7ycnJNVW+iLgIu2GwZn8p/91exIH8SgB8PSxcFu/HlW38CfbWTB0iZ9KzZ8/z+jntU0VERE51vvtUObM6v5Jizpw5eHl5MXbs2LOuV1ZWxoMPPsi0adOIiIi44Oft3LlzjaRcdrudzZs319j2zKZ+XJc79QI1388D//qFRZvyAAj08WBcv1aM69+KED+vC972H9F749rcqR9X7UX71NNTP67LnXoB9+rHnXoB9ePK3KkXd1fnIcVnn31GdnY2vXr1AnAOhvntt9+yfv1653qbN28mPT2d6dOnM336dOfyiRMnMnLkSJ544olqPa/NZqvRX8aa3p7Z1I/rcqde4Pz7qbA7OFpcTrNAHwBGdY9kxe4jjB8Yw639own29azpUv+Q3hvX5k79uFov2qeenfpxXe7UC7hXP+7UC6gfV+ZOvbirOg8pvv7661O+P9PtHr169WLTpk2nLGvbti2zZ8+u1u0eIlK/lVXa+d+GDGYmpRDXNID37+gDQGK7Zqx+JJEAb1MnKRIRERERkRrkcjdtd+/enc8//9zsMkTEZKUVdj5Ym07CP5KYtmAzB46WsDUzn9yicgAsFosCChERERERN2P6Ef5vr6DYuHHjGdfduXNnbZcjIiYrKbfz8bp9zFmeSnZBGQBhQd7cPTiOG/u0xNdLl+eJiIiIiLgr00MKEZETSivsJL6YxMG8qrFqIoJ9uCchjmt7ReHjqXBCRERERMTdKaQQEVMVlFbg5WHF28OGj6eNhLZNWZVyhHsT4rm6Rwu8PFzurjQREREREaklCilExBR5JRW8tzqdd1al8fBl7bi5bysAHrmsPX5eNjxtCidERERERBoahRQiUqeOFpfz/tp9vLc6nYKySgCWbD3kDCnMmEpURERERERcg0IKEakTOUXlfLipgG8+W05RuR2AtmGB3J8Yz+Wdm5tcnYiIiIiIuAKFFCJS6zbsPcotc3+kpKIqnOjQPIjJw+IZ3iEcq9VicnUiIiIiIuIqFFKISK0oLKskwLvqn5hOkUEE+3oQEWDh4Su6cEnHcCwWhRMiZ1NaYWfuylRS9xXQpYuBTRPciIiISAOgkEJEalTGsRJmJ6Uy/+cDLHlwMC0a+eHtYeO/E/uRlbad7u2bKaAQ+QMrdh3mr59tYW9OMTYLPFZWSSNP7bJFRETE/emIR0RqxP7cYmYmpfDfDQeosBsAfLn5IBMGxwHQPNiHQwonRM4qu6CUZxZv5/NfMgEIC/Tm9i6+BGlAWREREWkgFFKIyAXZc6SIN79PYcHGDOyOqnBiQHxjJiW25qLYxiZXJ1I/OBwGn/y0jxlf7aCgtBKrBW7tF80Dw+JJ3bHF7PJERERE6oxCChE5b3NXpvHcl9s5nk0wuE1TJifG0ys61NzCROqRHVn5TJu/mZ/3HQOqxnB5fnQXOrcIxm63m1uciIiISB1TSCEi1VJaYcfHs2oEv+4tQ3AYMKxdMyYNa023qBBzixOpR4rLK3n1u93MXbkHu8PA38vG1OFtubVfKzxsVrPLExERETGFQgoROSdbM/N4/bsUsvJLWXBvfywWCz1bhfLd1CHENQ0wuzyRemXZjkP8deFWMo6VAHBpx3AeH9GB5sG+JlcmIiIiYi6FFCJyVr/sP8bry3bz7fZsACwW2HYwn44RwQAKKESq4VB+KU8u2sqXm7MAiAzx5ckRHbm4Q5jJlYmIiIi4BoUUInJaG/Ye5bXvdrN812EArBa4qmsE9w+Np3VYoMnVidQvdofBh2vTeWHpLgrLKrFZLdw5MIYpw1rj761dsYiIiMgJOjISkVMYhsHdH25g6bZDANisFkZ2i+C+ofG6akLkPGzJyGPags1sOpAHQLeoEJ4b3ZkOEUEmVyYiIiLiehRSiAiGYWB3GHjYrFgsFmKa+uNhtXB1jxbcOzSOVo39zS5RpN4pLKvkpaW7eG/NHhwGBPp48OdL23FTn5bYrBazyxMRERFxSQopRBowwzBYsfsIr323m8R2zbhvaDwAEwfHcUvfVkSF+plcoUj9tGRrFk98vpWDeaUAXNmlOY9d2YFmQT4mVyYiIiLi2hRSiDRAhmGwbEc2r323m1+OX4KecbSEuwfH4mGz0sjfi0b+XiZXKVL/ZBwr4fHPtvLt9qrbpaJCfXlmVGeGtGlqcmUiIiIi9YNCCpEGxOEwWLrtEK8v283WzHwAfDyt3Ny3lTOgEJHqq7Q7eG9NOi99s4vicjseVgsTBscyKbE1vl42s8sTERERqTcUUog0EFl5pYx7dx07sgoA8POyMbZfK+4aFEuTAG+TqxOpv5L3H2Pa/M1sO1gV/PWObsSzozvTRrPgiIiIiFSbQgoRN2YYBhZL1QB9TQO9qXQYBHh7MK5/NHcMjCFUt3SInLf80gpeWLKTD3/Yi2FAsK8n0y5vx7U9o7BqYEwRERGR86KQQsQNVdodLEzOZGZSCrNu7knb8EBsVguv3dCdyBBfgv08zS5RpN4yDIMvN2fx5KKtZBeUATCmeyTTrmivq5JERERELpBCChE3Ul7pYMHGA7z5fSr7cosBeGdVGn+/pisAHSKCzCxPpN7bn1vMXz/bQtLOwwDENPHn2VGd6B/fxOTKRERERNyDQgoRN1BWaec/6w8wKymVjGMlADT29+KuwbHcclErk6sTqf8q7A7eXpnGa9/tprTCgZfNyj0JcdyTEIePpwbGFBEREakpCilE6rkVuw7z5/9uIiu/FKgae+LuwbHc1Lclfl76Exe5UBv25jJt/hZ2HqoadPai2FCeHd2ZuKYBJlcmIiIi4n50BiNSD508IGZ4sA+HCkoJD/Jh4pBYbujTUp/sitSAvOIKZny9g0/W7QMg1N+L6Ze3Z0yPSOffn4iIiIjULIUUIvVIYVklH67dy/c7svlkwkXYrBbahAXy3u19uCg2FG8PhRMiF8owDD5LzuSZL7ZxpLAcgOt6teAvl7WnkWbEEREREalVCilE6oH80go+WJPO3FV7OFZcAcCSrVlc3rk5AEPaNDWzPBG3sedIEX9duIVVKUcAiG8WwLOjOtE3trHJlYmIiIg0DAopRFxYYbmDV7/bzXtr9pJfWglUzSZw/9B4hncIM7k6EfdRVmlnzvI03vg+hfJKB94eViYPa81dg2Lx8rCaXZ6IiIhIg6GQQsRFvb1yD69+e5iSymyg6hPdSYnxXNklAptV98OL1JQf0nKYvmAzqYeLABjUugnPjOpEq8b+JlcmIiIi0vAopBBxUQ7DoKTSoG1YAJOHteGyTuFYFU6I1JjconKe+3I7/91wAIAmAd789cr2jOgaoYExRUREREyikELEBWTnl/LWijT8vGw8NLwtADf3bQkF2dx1WV88PfWnKlJTDMPgvxsO8NyX2zl6fIyXm/u25M+XtiPY19Pk6kREREQaNp35iJjoYF4Jc5an8fG6fZRXOvD1tHH7gBga+XsR4O1B30gfXT0hUoNSsguZvmAzP+7JBaBdeCDPju5Mz1aNTK5MREREREAhhYgpDhwtZlZSKv9Zf4ByuwOAnq0aMXlYa0L89EmuSE0rrbAz8/sUZi1PpcJu4Otp44GLW3PHwBg8bRoYU0RERMRVKKQQqUOlFXYe/2wr//v5AJUOA4C+MaFMGdaafnGNdR+8SC1YtfsIjy7cTHpOMQCJ7Zrx5IiORIX6mVyZiIiIiPyWQgqROuTtYWV3dgGVDoOB8U2YlBhP39jGZpcl4paOFJbx/Fc7WZicCUBYkDdPXNWRSzuFKxAUERERcVEKKURq0e5DBbzxfQo3921Fn5hQLBYLj13VEbvDQc9WoWaXJ+KWHA6DpWnFfLJoJfmllVgscFu/aKYOb0Ogj26nEhEREXFlCilEasH2g/m8sSyFL7ccxDCqpjr88M6+AHSLCjG3OBE3tjOrgL/M38TP+/IB6BQZxHOjO9OlRYi5hYmIiIjIOVFIIVKDtmTk8dp3u1m67ZBz2aUdw7k/Md7EqkTcX0m5nVe/283clWlUOgx8PCz83/C2jBsQg4cGxhQRERGpNxRSiNSA9CNFPL14G9/tyAbAYoHLOzdnUmI87cKDTK5OxL19vzObvy7cwoGjJQAM7xDGNTEOhvWPxqaAQkRERKReUUghUgO8PKys2H0YqwVGdI3g/sR44psFml2WiFs7lF/KU4u28cXmgwBEBPvw5MhOJLZtQnJysrnFiYiIiMh5UUghUk2GYfBDWi7//HEvL17bFR9PGxEhvswY04UerRoR08Tf7BJF3JrdYfDRj3v5x9c7KSirxGa1cMeAaB64uA3+3h7Y7XazSxQRERGR86SQQuQcGYbB6pQcXvtuN+vScwG4KCaUsf2iAbi6ZwsTqxNpGLZm5jFt/mZ+OZAHQNeoEJ4b3YmOEcEmVyYiIiIiNUEhhcgfMAyDpF2Hee273WzcdwwAL5uV63tHkdg+zNziRBqIorJKXv5mF++uScfuMAj09uDPl7blpr6tsFktZpcnIiIiIjVEIYXIWaxOOcLfvt7BpuOf2np7WLmxT0smDokjPNjH5OpEGoalW7N44vOtZOaVAnBFl+Y8dmUHwoL0NygiIiLibhRSiJzFvtxiNh3Iw9fTxi0XteSuwbE0C9SJkUhdyDxWwhOfb3VO6RsV6svTIzuR0LaZyZWJiIiISG1RSCFynN1h8OXmg6QfKWLSsNYAXN2jBUcKyripb0saB3ibXKFIw1Bpd/D+2r28tHQnReV2PKwW7hocy+TE1vh62cwuT0RERERqkUIKafAq7Q4WbzrI68t2k3q4CA+rhVHdI4kK9cPLw+oMLESk9v2y/xjTFmxma2Y+AL1aNeLZ0Z1pG64pfUVEREQaAoUU0mBV2B0s3JjBm9+nkJ5TDECQjwd3DIwhyNfT5OpEGpaC0gpeWLKTD37Yi2FU/S3+5fL2XN8rCqsGxhQRERFpMBRSSINjGAb/+mk/byalsD+3BIBGfp6MHxTLrf1aEeijgEKkrhiGwVdbsnhy0VYO5ZcBMLp7JNOvaE8T3WIlIiIi0uAopJAGx2KxsHTbIfbnltAkwIsJg2O5uW8r/L315yBSl/bnFvPYZ1v4fudhAKIb+/HMqM4MbN3E5MpERERExCw6KxO3V1ph5+Mf9xHfLIDBbZoC8MDFrRkQ34Sb+rTUQHwidazC7uCdVXt45dtdlFY48LRZuCchnnsT4vDx1N+jiIiISEOmkELcVnF5JR/9sI85K9I4UlhG58hgBrVugsVioUuLELq0CDG7RJEGZ8Peo0xfsJkdWQUA9I0J5dnRnYlvFmByZSIiIiLiChRSiNspqXAwe3ka76xOJ7eoHIDIEF9u6BOFwwCbxuATqXN5xRX8bckOPlm3D8OoGgdm+hUduLpHJBaL/ihFREREpIpCCnEbhWWVvLMyjbdXHKawPBuAVo39uC8hntE9IvG0WU2uUKThMQyDz3/J5OnF2zhSWBUaXtuzBX+5vD2h/l4mVyciIiIirkYhhbiNSruDt1akUVRuENPEj0mJrRnRNQIPhRMiptibU8SjC7ewcvcRAOKa+vPs6M5cFNvY5MpERERExFUppJB6K7eonPdW72H84FiCfDwJ8fPiz39qy9HsDO698iK8PPXrLWKG8koHb61I5fVlKZRVOvDysDJpaDwThsTi7aGBMUVERETkzHQWJ/XO4YIy3l6Zxodr91JSYcfTZmXSsNYA3HJRS5KTc7FZdY+7iBl+TMth+sItpGQXAjAwvgnPjOpEdBN/kysTERERkfpAIYXUG4fyS5m9PJWPf9xHWaUDgM6RwXRuEWxyZSJytKic57/azr/XHwCgSYAXf72yAyO6RmhgTBERERE5ZwopxOVlHithVlIq/1q/n/Lj4US3qBCmXNyahDZNdQIkYiLDMPjfzxk89+V252w6N/VtycN/akewn6fJ1YmIiIhIfaOQQlxe8v5jfPjDXgB6Rzdi8rDWDIxvonBCxGSphwt5dMEW1qblANA2LJDnxnSiZ6tQkysTERERkfpKIYW4nPQjRSzfdZjb+kcDcGnHcK7vFcWo7pFcFBuqcELEZKUVdmYlpTIrKZVyuwMfTysPXNyGOwfGaKpfEREREbkgCinEZaQeLuTNZSksTM7AYUCfmFDaNw/CarXwt2u6mF2eiABrUo4wfeEW9hwpAmBo26Y8NbITUaF+JlcmIiIiIu7A1JDCbrczbtw4IiMjmTFjxmnX+eSTT3jvvffIzs6mWbNm3Hrrrdx88811XKnUpl2HCnh9WQqLN2ViGFXLhrZtiodm6BBxGUcKy3j2i+0s2JgBQLNAb54Y0ZHLOoXr6iYRERERqTGmhhRvvPEG69evJzIy8rSPf/vtt7z00ku8/fbbdO3aleTkZCZMmECTJk3405/+VMfVSk3blpnP68t289WWLOeySzqEMSkxni4tQswrTEScHA6Df6/fz/Nf7SCvpAKLBW69qBVT/9SWIB8NjCkiIiIiNcu0kGLt2rUsXbqU4cOHn3GdQ4cOcdddd9GtWzcAunfvTt++ffnpp58UUriBt1emOQOKyzqFc39iPB0jNJ2oiKvYdaiAafM3s37vUQA6NA/iuTGd6RYVYm5hIiIiIuK2TAkpcnJymD59OjNnzuS9994743q/va0jJyeHn376ib/85S/Vfk673V7tnznbdmpqe2ary3427jtGcXklA+KbAHDPkBgq7HbuTYijbVhgjdThTu+PO/UC7tWPO/UCv++npNzOm0mpvL1yD5UOAz8vGw9e3JpbL2qJh83q8n270/tTW73YbLYL+nntU09P/bgud+oF3Ksfd+oF1I8rc9V9qvyexTBOjAJQNxwOB+PHj2fo0KGMHTuWRx55BOCMY1KccPjwYe6++24aNWrEnDlz8PA4t3zFbreTnJx8oWXLBdh2uJz/bi/kl0PlhAfYeO1PTbBpvAkRl7Qxq4y3fs4nu6hqB94nwps7uwfRxE87YHfSs2fP8/o57VNFREROdb77VDmz87qSYvXq1Xz44YdkZ2czZ84c5s2bx9SpU88pOJgzZw5eXl6MHTv2nJ8vOTmZKVOm0KtXL55//vlzDihO1rlz5xpJuex2O5s3b66x7ZmttvoxDIMf9uTy+rJUftyTC4CH1cKgtuG06dCOwFq6l92d3h936gXcqx936gWq+lmxLpn56Va+3FJ1a0d4sA9PXNmeSzqEmVxd9bnT++OqvWifenrqx3W5Uy/gXv24Uy+gflyZO/Xi7qp9tr9o0SKef/55rr32Wn766ScAli1bhsVi4c9//vMf/vxnn31GdnY2vXr1AqC0tBSoGiRz/fr1v1v/v//9L8888wyTJ0/mjjvuqG65TjabrUZ/GWt6e2arqX4Mw2Dl7iO8vmw3P6VXnex42ixc2yuKe4bE1dk0he70/rhTL+Be/bhDLw6Hwafr9zHj6yMUVxpYLXD7gBgevKQNAd71e5Zqd3h/TnC1XrRPPTv147rcqRdwr37cqRdQP67MnXpxV9U+An3rrbeYOXMm3bp14+OPP6Zp06bMmTOHW2+99ZxCiq+//vqU7892u8eSJUt44oknmDVrFoMGDapuqWKCskoHD/07mSOF5Xh5WLmhdxQTh8QREeJrdmki8hvbMvOZtmAzyfuPAdAlMpjnxnSmU6QGsBURERERc1Q7pMjKyqJr164AWCxV4wq0atWK4uLiGimoe/fuPPnkk4wYMYI33ngDu93O5MmTT1nnqquu4qmnnqqR55MLYxgG32w7RNeoEMKCfPDxtDEpsTV7c4q5e0gsYUE+ZpcoIr9RVFbJK9/uYt7qdOwOgwBvG9d38OPhMRfh5Vm/r54QERERkfqt2kej0dHRfPfdd1x88cXOZWvWrKFVq1bnVcBvr6DYuHGj8+tFixad1zal9jkcBl9vzeL1ZSlsP5jPHQNieOyqDgDc1j/a3OJE5Iy+3XaIxz/fSsaxEgCu6Nyc6Ze35WDaDg1oKyIiIiKmq3ZI8eCDD3LvvfcybNgwysrKeOKJJ1i8eDEvvvhibdQnLsbuMFi8KZM3v09h16FCAPy9bAT71s5AmCJSMw7mlfDE51tZsvUQAC0a+fL0yE4MbdcMu93OQZPrExERERGB8wgp+vfvz6effsq//vUv+vbti8PhYN68eXTp0qU26hMXUWl38PkvmbzxfQpph4sACPTx4PYBMdwxIJoQPy+TKxSR07E7DN5fk86LS3dSVG7Hw2ph/KBYpgxrja+XBo0SEREREddS7ZDinXfe4c477+Txxx8/Zfkrr7zCAw88UFN1iYtZv/coD/37FwCCfT0ZPzCGW/tH6woKERe26cAxpi3YzJaMfAB6tmrEs6M70S48yOTKRERERERO75xCitzcXFJTUwF4/fXX6dq1K4ZhOB8vKCjg/fffV0jhRsoq7Xy/I5tLOzUHoG9MKMM7hNG9ZSPG9mtV76cmFHFnBaUVvLh0Fx+sTcdhQJCPB49c1p4bekdh1bgTIiIiIuLCzulM08vLi8mTJ3P06FEAbrnllt89fv3119d8dVLnSivs/Oun/cxensrBvFI+nXARF8U2xmKx8NatvcwuT0TOwjAMlmzN4vHPt3IovwyAkd0iePSKDjQN9Da5OhERERGprrKyMo4ePUp4eLjZpdSZcwopAgICWLt2LQCXXnopX3/9da0WJXWvpNzOp+v38taKNLILqk5uwoK8ySupMLkyETkXB44W8/hnW/luRzYA0Y39eHpUJwa1bmpyZSIiIiJyvm666SZuvvlmxowZY3Ypdaba1+yfKaDIzc0lNDT0gguSulVUVsnCnUV8+eVycorKAYgI9uGeofFc27MFPp4aWE/ElVXYHcxbtYdXvt1NSYUdT5uFiUPiuG9ovP5+RUREROq5E3czNCTVDik2bdrE3//+dw4dOoTD4QCgoqKC3NxctmzZUuMFSu16/ftUPtxUAEBUqC/3JsRzdY8WeHlYTa5MRP7Iz/uOMm3+ZnZkVf0N94kJ5bnRnYhvFmhyZSIiIiJyoe644w4yMzN5/PHH2bJlC1dffTUzZsxgx44dNGrUiJtuuonbbrsNi8XC66+/zu7du/Hy8iIpKQk/Pz9GjhzJ1KlTARg7dix9+vRh0qRJABw4cIBhw4bx3Xff0aJFC9q2bcvYsWNZtGgR3bt3Z/bs2axZs4aXXnqJ9PR0wsLCuPvuuxkxYkSt913tkOKpp54iKiqK1q1bs3//fgYMGMAHH3zgbF5cW15JBamHC+nRshEA4/q1Yskv+7nvknaM6RGFp03hhIiryyup4O9f7+DjdfswDGjk58m0y9tzTc8WWCwaGFNERETEHcybN4/ExETuv/9+BgwYwBVXXMGDDz7IvHnz2Lt3L/feey8+Pj7ccMMNACxdupQZM2bwt7/9jVWrVnH33XczbNgwunXrdk7Pt2/fPpKSkqioqGDHjh3cc889/OMf/2DYsGH88ssv3HvvvTRq1IhBgwbVYtdQ7TPS3bt38/zzz3PzzTdjt9u5/fbbefnll1m0aFFt1Cc15GhROS8u3cnAGcu4+8MNlFbYAQgP9uGl4Y25pkcLBRQiLs4wDD7/JZNhLy7nox+rAoprerbgu6kJXNsrSgGFiIiIiJv6/PPPiYuL4+abb8bT05P4+HjuvPNOPvroI+c60dHRjBo1CpvNxpAhQ2jatCnp6enn/BxXXnklvr6+BAUF8emnnzJs2DCGDx+OzWajR48eXHfddac8X22p9pUUQUFB+Pj4EBUVxe7duwHo1q0bGRkZNV6cXLicwjLeXrmHD9emU1ReFUxEhPiSeayE2KYBADqxEakH9uYU8ejCLazcfQSA2Kb+PDuqM/3iGptcmYiIiIjUtoyMDLZu3UqvXr/OuOhwOLDZfh2DrGnTUwdM9/T0dA7RcC6aNWt2yvP98MMPpzyf3W6nZcuW51N+tVQ7pIiNjeWTTz7hxhtvxM/Pj+3bt+Pl5aUTXReTXVDK2yvS+OcP+yg5ftVEh+ZBTB4Wz/AO4Viter9E6oPySgdvr0zjte92U1bpwMvDyv1D47l7SCzeHhoYU0RERORcOBwGFXbD7DLOW3h4OH379uWdd95xLjt69ChFRUXn9PNWq5WKil9nbjzdgJwnn9OHh4czevRonnrqKeey7OxsDKP2X8NqX98/ZcoUXnnlFfbt28edd97Jddddx9VXX83o0aNroz45D4ZhMHbuOt5euYeSCjtdWgQz99ZefDF5IJd2aq6AQqSeWLcnlyteW8k/luykrNLBgPjGLHlgMJOHtVZAISIiInIOSivsfLg2naEvreCOz7M5mFdqdknV4uXlRUFBAVdddRXJycl8/vnnVFZWkp2dzcSJE5kxY8Y5bScuLo6VK1eSn59PQUEBb7/99lnXv+aaa1i8eDGrVq3C4XCQnp7OLbfcwrx582qirbOq9pUUPXr0YMWKFXh6enL99dfTvn17CgoKGDBgQG3UJ+co41gJFqpu5bBYLNw5MIZPf9rH5GGtGdKmqa50EalHjhaVM+OrHfxr/X4AmgR48egVHRjZLUJ/yyIiIiLnIK+kgn/+sJd5q/aQU1QOQBM/a72bxfCaa67h5ZdfZvPmzcydO5cXXniBZ555BpvNRkJCAtOnTz+n7dx9991Mnz6dYcOGERgYyOTJk1myZMkZ1+/atSsvvfQSL730ElOmTMHX15crr7yShx56qKZaO6NqhxQAubm5ZGRkOC/18PLy4qeffqJ37941Wpz8sf25xcxMSuG/Gw4womskL17XFagaTO/aXhrpX6Q+MQyD+T9n8OyX28k9vjO9sU8UD1/ajhA/L5OrExEREXF9h/JLmbdqDx/9uI/CskoAWjTy5a6BMbT2zKGxf/06pho/fjzjx493fn+mgStPTC16smXLljm/DgsLY+7cuac8PmrUKOfXO3fu/N3PJyQkkJCQUM2KL1y1Q4pZs2bx6quv/m65xWJh+/btNVKU/LE9R4p48/sUFmzMwO6oCouyC0qxOwxsVotu6RCpZ9IOF/Lowi2sSc0BoG1YIM+O7kSv6FCTKxMRERFxfXuOFPHWilT+tyGDcnvVYJHtwgO5JyGOKzo3x4JBcnKuyVXKuah2SPHee+/x5ptvkpiYqE/pTZCSXcAby1L4/JdMjmcTDG7TlMmJ8TqZEamHSivszEpKZVZSKuV2Bz6eVqYMa8P4QTGaFlhERETkD2w+kMfs5al8ueUgJ8Z07B3diHsS4hjatpnznNVut5tYpVRHtUMKDw8PEhISFFCY4MDRYoa/vMIZTiS2a8akxHi6t2xkbmEicl7WpB7h0QVbSDtSNSrzkDZNeWZUJ6JC/UyuTERERMR1GYbB2tQcZi1PdU7PDjCsXTMmJsTRWx/e1mvVDiluvvlmXn75ZSZOnEhAQEBt1CQn2ZGVT5tmgVitFlo08iOxXRhWC0xKbE3nFsFmlyci5yGnsIxnv9zO/J8zAGga6M3jV3WouhRRAbCIiIjIaTkcBku3ZTErKZVfDuQBYLNaGNE1gruHxNIuPMjkCqUmVDukiI2NZerUqafMz3qCxqSoOcn7j/H6d7v5bkc2s2/pyaWdwgGYdUsPXQIuUk85HAb/2bCf57/awbHiCiwWGHtRK/7vT20J8vE0uzwRERERl1Re6WDhxgxmr0gl7XDVFajeHlZu6B3F+EGxugrVzVQ7pJgxYwZ33HEH/fv3x2az1UZNDdqGvbm89l0Ky3cdBsBqge0H850hhQIKkfpp96ECpi3YzE/pRwFo3zyI58d0pltUiLmFiYiIiLioorJKPlm3j7kr95CVXwpAkI8Ht/WP5rb+0TQJ8Da5QqkN1Q4pCgoKmDp1am3U0qD9kJbD68t2szqlamR/m9XCqG6R3Dc0jtimuq1GpL4qrbDz+rLdvLUijQq7gZ+XjYcuacO4/tF4KHQUERER+Z3conLeW5PO+2vSySupACAsyJvxA2O5sW9LAryrfRor9Ui1391LLrmEb775hksuuaQ26mmQ/vXTPh7+32YAPKwWrunZgnsT4mnZWJctidRny3cd5q8Lt7AvtxiAi9uH8eTIjkSG+JpcmYiIiIjrOXC0mLkr9/DpT/soraiaRjSmiT8Th8Qyqnsk3h66kr8hqHZIUVpaypQpU4iLiyMkJOSUQd4++OCDGi3OXRmGwf7cEmcIcWnH5vz9651c2imcexLiaNFI4YRIfZZdUMrTi7ez6JdMAMKDfHhyZEf+1DHc5MpEREREXM+uQwXMXp7K58mZVB6fyrBzZDD3JsQxvGM4NqsGFm9Iqh1SxMfHEx8fXxu1uD3DMFi2I5vXvttN2uEiVj2cSLCfJ8F+nqx6OBFfLyWDIvWZw2Hw0bp9/P3rHRSUVmK1wLj+MTw0vI0uSxQRERH5jQ17jzIrKZVvtx9yLhsQ35h7hsQzIL6xZj1roKp91Hz//ffXRh1urWqqnEO8vmw3WzPzAfDxtJJ84BhD2jQFUEAhUs9tP5jPtAWb2bjvGABdWgTz3OjOdIrUVMEiIiIiJxiGQdKuw8xKSmXdnlwALBa4tGM4E4fE0VWDijd45xxSPPHEEzzxxBP85S9/OeM6zz//fI0U5S4cDoOvtmTx+rLd7MgqAMDPy8at/aIZPyhGo9GKuIHi8kpe/XY3c1ftwe4wCPD24P+Gt2Fsv2hdmigiIiJyXKXdwRebDzIrKdV5buRpszCmewsmDIklrgFMFmAYBqWlpXX6nD4+Pud8Rcpjjz3GgQMHmDdvnnPZU089RWFhIffffz/PPfccGzduxM/PjxEjRnDffffh5eVFYWEhf/3rX1mzZg0eHh60a9eOadOmERcXd141n3NIYRjGeT1BQzblX8nOe9IDvaumyrljYAyh/l4mVyYiNWHZjmyeWLSdjGMlAFzeOZzHruxIeLCPyZWJiIiIuIbSCjv/2XCAt1aksj+36pjJz8vGzX1bcufA2AZz3GQYBnfeeSebNm2q0+ft2rUrc+fOPaeg4pprruH666/n0KFDhIWFUV5ezhdffMHf/vY3xo0bxxVXXMGrr75Kbm4ukydPxuFwMHXqVObNm0dhYSHLly/HarXy2GOP8cILLzBr1qzzqvmcQ4onn3wSgBtuuIGuXbv+7vEVK1acVwHupNLu4FhJhfMKiSs6N2f5zmzuGBjD7f1jCPbzNLlCEakJWXml/H3NUX7MyAIgMsSXp0d1JLFdmMmViYiIiLiGvJIK/vnDXt5dvYcjheUAhPp7cXv/aMb2a0WIX8P74NbVx9jo0qULcXFxLF68mDvvvJOkpCQCAgIoLi6mvLychx56CIvFQvPmzZkyZQqTJ09m6tSp+Pj4sGPHDhYuXMiAAQN47rnnsFqt511HtcekuP322/n5559PWVZYWMiUKVPYuHHjeRdSn5VXOpj/8wFmJqXSJiyAubf1BmB4hzAGPJJIoI/CCRF3YHcYfLA2nReX7qSwzI7NamH8oBimDGuNn5cGxhQRERHJzi9l3up0PvphLwVllUDVBzoTBsdyXa+oBjsWn8ViYe7cuS59uwfAmDFjWLhwIXfeeSfz589n9OjRZGRkkJubS+/evZ3rGYZBRUUFOTk53HXXXXh5efHf//6Xp556iqioKKZOncrw4cPPq+ZzOqreu3cvV1xxBXa7HcMwaN++/e/W6dGjx3kVUJ+VVdr5z/oDzEpKdV7uXVxeybHickL8vLBaLQooRNzE5gN5TFuwmc0ZeQC0CfXk5Zv70DEyxNzCRERERFxA+pEi3lqZxn83HKC80gFAm7AA7kmI48ouEXjazv+TdXdhsVjw9fU1u4yzGjlyJC+99BIbN25k9erVPPbYY2zYsIGWLVvy9ddfO9crLCwkJyeH0NBQdu7cSWJiIuPGjaOgoICPP/6YBx98kB9++IHAwMBq13BOIUWrVq34z3/+Q35+PhMmTODtt98+5XFvb2/atGlT7Sevr8rsBu+v3ctbK/aQlV+VhDUN9ObuwbHc1LelPlEVcSOFZZW8uHQn769Jx2FAoI8Hf/5TG9p55tAuvPr/6IqIiIi4ky0ZecxensqXmw/iOD6MYc9Wjbg3IY6hbZth1UDi9Urjxo0ZMmQITz31FL169SIiIoKgoCD+/ve/M3fuXG699VZKS0v5y1/+wsGDB5k/fz7/+c9/2Lp1K2+++SahoaEEBATg5+eHl9f53dJzzmfTJ66eWLx4MVFRUc7lhYWFeHl5nXcB9U1phZ3JXx3mSEnVXL7hQT5MHBLLDX1a4uPZMC9dEnFHhmGwZGsWT3y+zRlGjugawaNXtqexnyfJybkmVygiIiJiDsMw+CEtl1nLU1mx67BzeWK7ZtyTEEfv6FATq5MLNWbMGO69915efPFFAAICAnjvvfeYMWMGc+fOxeFw0LdvX+fAmA899BBPPfUUV1xxBWVlZcTGxjJz5ky8vc9vNstqf+RfXl7Offfdx5tvvsk333zDgw8+iL+/PzNnzqRnz57nVUR94uNpo1MzL3blwb0J8VzbqwXeHgonRNzJgaPFPPH5Vr7dng1Aq8Z+PD2yE4PbNAXAbrebWZ6IiIiIKRwOg2+2H2JWUirJ+48BYLXAVV0jmDgkjvbNg8wtUGpEZGQkQUFBXHLJJc5lcXFxv7uj4gR/f3/+9re/1djzVzukeO6552jWrBmGYfDSSy8xefJk/P39mTFjBv/5z39qrDBXNq5bEH17dMPXW+NNiLiTSruDd1en89I3uyipsONps3D34DjuT4zXlVIiIiLSYJVXOli8MZPZy1NJPVwEgLeHlet6RXHXoFhaNvYzuUKpCYWFhWRmZvLKK68wZsyY874S4kJVO6TYuXMns2fPJiMjg3379nHTTTfh7+/vvBSkIQj0suLloYFfRNzJxn1HmbZgC9sP5gPQJzqUZ0d3onWYxp0QERGRhqmorJLFu4q4b+kKsvKqbn8N9PHg1n6tGNc/hqaB5pzESu3Iysri+uuvp127dtx7772m1VHtkKKyshLDMFi9ejUdO3YkICCA3Nxc01IWEZELkVdSwT+W7OCjH/dhGBDi58m0y9pzTc8WGuhJREREGqSjReW8tyad99ekc6ykAqiaKGD8wBhu6ttSMxi6qfj4eDZu3Gh2GdUPKfr378+kSZPYsWMHd955J/v37+fPf/4zCQkJtVCeiEjtMAyDxZsO8tTibRwuKAPg6h4tmHZ5OxoHKHQVERGRhifzWAlvr0zj03X7KamoGoMrPMDGpIvbcXXPKN3+KnWi2iHF008/zbx58+jVqxdXXnkl2dnZdOzYkalTp9ZGfSIiNW5fTjF//WwLy4+PRh3bxJ9nRneif1wTkysTERERqXsp2QXMXp7Gwo0ZVB6fR7RjRBATB8cSVnmQnt2jsNkUUEjdqHZI4e3tTUVFBe+99x5vvvkmn3/+ORs3bqSwsBBfX9/aqFFEpEaUVzp4e2Uar323m7JKB142K/cNjWdiQqxm6REREZEG5+d9R5mdlMrSbYecy/rHNeaehDgGxjfB4XCQnJxlYoXSEFU7pHj99df58ccfee2113jggQdo0qQJ4eHhPPPMM7z66qu1UaOIyAX7KT2X6Qs2s+tQIVC1A35mVCdimwaYXJmIiIhI3TEMgxW7jzArKYUf0nIBsFjgTx3CmZgQR7eoEHMLlAav2iHFokWL+OSTTwgLC8NiseDn58fzzz9/yhyqIiKu4lhxOTO+2sGnP+0HoLG/F49e2Z5R3SKxWDQwpoiIiDQMlXYHX23JYlZSKtuOz2bmabMwqlskdw+JI76ZPrgR11DtkKK4uJjQ0FCgKoUD8PHxwWrVlJwi4joMw2BhcgbPLN5OTlE5ADf0juKRy9oR4udlcnUiIiIidaO0ws7/fj7AWyvS2JtTDICfl40b+7TkzoExRIToln1xLdUOKbp168Ybb7zBgw8+6PwU8sMPP6Rz5841XpyIyPlIO1zIXz/bwuqUHADahAXw7OjO9I4ONbkyERERkbqRX1rBRz/s451VezhSWDWTWSM/T8b1j+HWfq1o5K8PbcQ1VTukmD59OrfddhsLFiygqKiIyy+/nKKiIt59993aqE9E5JyVVdqZlZTKzO9TKbc78PawMnlYa+4aFIuXh672EhEREfeXXVDKu6vT+efavRSUVQIQEezDXYNjub53FH5e1T4FFKlT1f4NjYqK4osvviApKYmMjAzCw8NJSEggIED3MImIedam5jB94WbSDhcBMLhNU54Z2YmWjf1MrkxERESk9u3NKeKtFWn8Z8MByisdALRuFsDEIXGM6BaBp00f2Ej9cF4xmq+vL5dddllN1yIiUm05hWU8++V25v+cAUDTQG8eu7IDV3ZproExRURExO1ty8xn9vJUFm/KxFE1ZCDdW4Zwb0I8w9o1w2rV8ZArKSkpOevjnp6eeHhUnaZXVFRQWVl5xnUtFgs+Pj5A1XhspaWlv1vH17d6Y44cOHCAYcOG8cwzzzBr1izy8vLo0qULzz//POHh4Xz77bfMnDmT9PR0mjZtyo033sitt95ao2NU6lofEamXDMPgP+sP8NxX2zlWXIHFArf0bcX//aktwb6eZpcnIiIiUmsMw2DdnlxmLU8laedh5/KEtk25Z0gcfWJC9WGNixo0aNBZH58xYwYXX3wxADNnzuTDDz8847odOnTggw8+AODYsWOnnXFz/fr151VnUlISCxcupLy8nNtvv52ZM2dy+eWX88ADD/D3v/+d4cOHs3PnTu69914Axo0bd17PczoKKUSk3knJLmDagi2s21M1t3e78ECeH9OZ7i0bmVyZiIiISO1xOAy+25HNrKQUft53DACrBa7sEsHdQ2LpGBFsboHiNu666y6CgoIASExMZOPGjcyfP59hw4Zx+eWXA9CxY0cmTJjAhx9+qJBCRBqm0go7byxLYc6KVCrsBr6eNh68pDW3D4jRfZYiIiLitirsDj5PzmT28lR2ZxcC4OVh5bpeLbhrUCytGvubXKGcq5UrV571cU/PX68Ivvfee5kwYcIZ1z35apmQkJA/3HZ1NGnSxPm1h4cHhmGQk5ND+/btT1mvRYsWZGRk1NjzgkIKEaknVuw6zF8/2+Kc3/vi9s14YkRHWjTSwJgiIiLinorLK/nXT/t5e0UamXlV4w0EentwS79W3D4gmmaBPiZXKNVVnTEiPD09TwktzsZisVR7/InqioyMZN++facs279/P02bNq3R51FIISIuLbuglGcWb+fzXzIBCA/y4YkRHflTxzDdaykiIiJu6WhROR+s3ct7a/ZwtLgCgCYB3tw5MIabL2pJkI/G35K6d/XVV3PzzTfz1VdfOcekePvtt7nuuutq9HkUUoiIS3I4DD5et4+/fb2DgtJKrBa4rX80U4e3JcBb/3SJiIiI+zmYV8LclXv4ZN0+isvtALQM9ePuIbFc3aMFPp42kyuUhqxr1668+uqrvPnmm0ybNo1GjRpx4403ctddd9Xo8+hIX0Rczo6sfKbN3+wcEKpzZDDPje5M5xYaDEpERETcT0p2IXOWp7IwOYMKe9U8oh2aB3FPQhyXdQrHQ2NvSR1p0aIFO3fuPGXZpEmTnF8PGzaMYcOG1WoNCilExGUUl1fy6re7mbtqD3aHQYC3B1OHt+HWftHYNMe3iIiIuJnk/ceYlZTC0m2HMKqyCS6KDeWehHgGt26iW1ulQVJIISIuYdmOQ/x14VYyjpUAcFmncB6/qiPhwRoQSkRERNyHYRisSjnCrKRU1qTmOJcP7xDGxIQ4emhKdWngFFKIiKkO5Zfy5KKtfLk5C4DIEF+eGtmRYe3DTK5MREREpObYHQZfb8li1vIUtmTkA+BhtTCqeyR3D46ldVigyRWKuAaFFCJiCrvD4MO16bywdBeFZZXYrBbuHBjDAxe3xs9L/zSJiIiIeyirtDP/5wzmLE8l/fhU6r6eNm7s05I7B8UQGVK700aK1Dc6ExCROrclI49pCzaz6UAeAN2iQnhudGc6RASZXJmIiIhIzSgoreDjH/fxzqo9ZBeUARDi58lt/aIZ1z+aRv5eJlco4poUUohInSmpcPDMF9t5f+1eHAYE+njw8KXtuKlPS6waGFNERETcwLFSOy8s3cU/f9xHQWklAM2DfRg/KJYbekfhr6nURc5KfyEiUieWbjvEo0uOkFPiAOCqrhH89cr2NAvUwJgiIiJS/+3PLWbO8lT+/dNhyh2HAYhr6s/EIXGM7BaJl4emERU5FwopRKRWZRwr4fHPtvLt9kMAtAz15elRnRnSpqnJlYmIiIhcuO0H85m9PJXFmw5id1TNI9q1RTD3Do3nkvZhulpUpJoUUohIrai0O3h3dTovf7uL4nI7njYLV7X24+kb+uPvo3swRUREpP4yDIOf0o8yKymF73cedi4f1LoJF0fYufmSPnh46FRL5HzoL0dEalzy/mNMm7+ZbQerptfqHd2Ip0d2pCgzBR9Pm8nViYiIiJwfh8Ng2Y5sZi1PZcPeowBYLXB55+ZMHBJH+/AAkpOTsVh09YTI+TI1pLDb7YwbN47IyEhmzJhx2nWWL1/OCy+8wP79+2nevDl//vOfGTp0aB1XKiLnIr+0gheW7OTDH/ZiGBDs68m0y9txbc8oDMNBcqbZFYqIiIhUX4XdwaJfMpm9PJVdhwoB8LJZuaZXCyYMiiW6iT9QdX4jIhfG1JDijTfeYP369URGRp728fT0dCZNmsRLL71EQkICS5cu5YEHHmDp0qWEhYXVcbUiciaGYfDF5oM8tWibc4qtMd0jmXZFe5oEeAOgfbaIiIjUNyXldv69fj9vrUgj41gJAAHeHtxyUSvuGBBNsyANAC5S00wLKdauXcvSpUsZPnz4GddZsGABvXr14uKLLwbg8ssvZ/78+fzrX/9i8uTJdVWqiJzF/txiHl24heW7qu7HjG3izzOjOtE/vonJlYmIiIicn7ziCj5Ym867a9LJLSoHoEmAF3cMjOHmvq0I9vU0uUIR92VKSJGTk8P06dOZOXMm77333hnXS0lJoU2bNqcsi4+PZ8eOHdV+zpq69OrEdtzlUi7147pcvZcKu4N3VqXz+vcplFY48LJZuGdIHHcPjsHb0/a7ul29n+pwp15A/biy2urFZruwsWG0Tz099eO63KkXcK9+XK2XrLxS5q1J59N1+ykqr6opqpEvdw2K4eoekc6xtc5Ur6v1c6HcqR9X3afK71kMwzDq8gkdDgfjx49n6NChjB07lkceeQTgtGNSjBs3ju7duzNlyhTnsldeeYXk5OSzhhsns9vtJCcn10TpInLcjiPlzN6Qz/78SgA6NfViQs8gIgM1Fq9IfdCzZ8/z+jntU0XEXWUUVPLZziKWp5dQefzsqFWwB6Pb+dO/hQ82TSMqZ3C++1Q5szo/o5gzZw5eXl6MHTv2D9f19fWltLT0lGWlpaX4+/tX+3k7d+5cIymX3W5n8+bNNbY9s6kf1+WKvRwrLufvS3bxr/VZAIT6VQ2MOapbxB+OYu2K/Zwvd+oF1I8rc9VetE89PfXjutypF3CvfszuZdOBPOasSGPJtiOc+Oi2T3Qj7h4cy5A2Tao9S4fZ/dQ0d+rHnXpxd3UeUnz22WdkZ2fTq1cvAGcI8e2337J+/fpT1m3Tpg1bt249ZVlKSgqdOnWq9vPabLYa/WWs6e2ZTf24LlfoxTAMPkvO5OnF28g5fl/m9b2ieOSydjTy96rWtlyhn5riTr2A+nFlrtaL9qlnp35clzv1Au7VT132YhgGq1NymLU8hdUpOc7lF7cP456EWHq2Cr3g53Cn9wbcqx936sVd1XlI8fXXX5/y/dlu9xgxYgTvvvsuX375JcOHD2fp0qWsW7eO6dOn10mtIgJ7jhTx14VbWJVyBID4ZgE8N7ozfWIufAcuIiIiUlfsDoMlW7OYlZTK5ow8ADysFkZ0i2DikDjahAWaXKGIgMlTkJ5O9+7defLJJxkxYgRxcXG8+eabvPDCC0yfPp3IyEhef/11YmJizC5TxO2VVdqZszyNN75PobzSgbeHlcnDWnPXoFi8PKxmlyciIiJyTsoq7Sz4OYM5K9LYc6QIAB9PKzf0bsn4QTG0aORncoUicjLTQ4rfXkGxcePGU74fNGgQgwYNqsuSRBq8tak5TF+4mbTDVTvyQa2b8MyoTrRqXP3xYERERETMUFhWycc/7mXuyj1kF5QBEOzryW39oxnXP5rQat6yKiJ1w/SQQkRcR25ROc9+sZ3//XwAgCYB3jx2VQeu6tK82gNHiYiIiJghp7CM99ak8/6adPJLq2YiCw/yYfygGG7s0xJ/b50Cibgy/YWKCIZh8J8NB3j+y+0cLa7AYoGb+rTkz5e2I9jX0+zyRERERP7Q/txi5q5M41/r91Na4QAgtqk/EwfHMap7pG5XFaknFFKINHAp2QVMW7CFdXtyAWgXHshzYzrTo2UjkysTERER+WM7svKZszyNz3/JxO6omke0a4tg7kmI45IO4disuhpUpD5RSCHSQJVW2Hnz+xRmL0+lwm7g62njwUtac/uAGDxt+qRBREREXNv69FxmJaXy3Y5s57JBrZtwz5A4+sU11q2qIvWUQgqRBmjV7iM8unAz6TnFACS2a8ZTIztqdGsRERFxaYZh8P3ObGYlpfJT+lEALBa4vFNzJg6Jo3OLYJMrFJELpZBCpAE5XFDGM19s47PkTADCgrx54qqOXNopXJ82iIiIiMuqtDtYvOkgs5ensiOrAAAvm5Wre0YyYXAcMU00A5mIu1BIIdIAOBwGn/60nxlfbSe/tBKrBW7tF83U4W0I9NHAmCIiIuKaSsrt/GfDft5akcaBoyUA+HvZuOWiVtwxMIawIB+TKxSRmqaQQsTN7cjKZ/qCLWzYW3VJZKfIIJ4b3ZkuLULMLUxERETkDPKKK/jwh3TeXZ1OTlE5AI39vbhjYAy39G1FsJ8+ZBFxVwopRNxUcXklr363m3dW7qHSYeDvZWPq8Lbc2q8VHhoYU0RERFzQofxS3lm1h49+2EtRuR2AFo18uXtwLNf2isLH02ZyhSJS2xRSiLih73dk89fPtjgvi/xTxzCeGNGR5sG+JlcmIiIi8nt7jhQxd1U683/OoNzuAKqmRb8nIY4rOjfXBywiDYhCChE3cii/lCcXbeXLzVkARIb48uSIjlzcIczkykRERER+b3NGHi+sPcYPGSsxjKplvaMbcU9CHEPbNtPA3iINkEIKETdgdxj884e9/GPJTgrLKrFZLdwxIJoHLm6Dv7f+zEVERMR1GIbB2tQcZi1PZeXuI87lw9o1Y2JCHL2jQ02sTkTMprMXkXpuS0Ye0xds5pcDeQB0iwrhudGd6RARZHJlIiIiIr9yOAyWbstiVlKq87jFZrUwoIU3j4zsSYfIEHMLFBGXoJBCpJ4qKqvkpW928e7qPTgMCPT24M+XtuWmvq2wWXVppIiIiLiG8koHCzdmMHtFKmmHiwDw9rByQ+8o7hjQiiN7d9E2PNDkKkXEVSikEKmHlm7N4vHPt3IwrxSAK7s057ErO9BMc4WLiIiIiygsq+TTdfuYu3IPWflVxyxBPh7c1j+a2/pH0yTAG7vdzpG9JhcqIi5FIYVIPZJ5rITHP9/KN9sOARAV6svTIzuR0LaZyZWJiIiIVMkpLOP9Nem8v3YveSUVAIQFeTN+YCw39m1JgMbLEpGz0L8QIvVApd3Be2vSeembXRSX2/GwWpgwOJZJia3x9dJ84SIiImK+A0eLmbtyD5/+tI/SiqppRGOb+HP3kFhGdY/E20PHLCLyxxRSiLi4TQfymL5wK9sO5gPQq1UjnhvTmTZhundTREREzLczq4A5y1P57JdM7I6qeUQ7RwZzb0IcwzuGa6wsEakWhRQiLqqgtIK3f85nSdpaDAOCfT35y2XtuK5XFFbt7EVERMRkG/YeZVZSCt9uz3YuGxDfmHsT4ukf1xiLRccrIlJ9CilEXIxhGHy5OYsnF20lu6AMgNHdI5l+RXuaBHibXJ2IiIg0ZIZhkLTrMLOSUlm3JxcAiwUu7RjOxCFxdI0KMbdAEan3FFKIuJD9ucU89tkWvt95GIDmATb+dl0PBrfRwJgiIiJinkq7gy82H2RWUio7sgoA8LRZGNO9BROGxBLXNMDkCkXEXSikEHEBFXYHc1fu4dXvdlFa4cDLZuXuwTH0b1RIn7jGZpcnIiIiDVRphZ3/bDjAWytS2Z9bAoC/l42b+rbkzoGxhAdr+nMRqVkKKURMtmFvLtPmb2HnoapPJS6KDeWZUZ2JaexLcnKyucWJiIhIg5RXUsE/f9jLu6v3cKSwHIBQfy9u7x/N2H6tCPHzMrlCEXFXCilETJJXXMGMr3fwybp9ADTy8+TRKzowpkckFosFu91ucoUiIiLS0GTnl/LO6j189MM+CssqAYgM8WXC4Fiu6xWlqc9FpNYppBCpY4Zh8PkvmTy9eJvzk4nrerXgL5e1p5G/PpUQERGRupd+pIg5K9L434YDlNsdALQJC+CehDiu7BKBp81qcoUi0lAopBCpQ+lHinh04RZWpRwBIL5ZAM+O6kTfWI07ISIiInVvS0Yes5an8tXmgziMqmU9WzXi3oQ4hrZtpmnPRaTOKaQQqQNllXbeWp7G69+nUF7pwMvDyuTEeCYMjsPLQ59MiIiISN0xDIO1aTnMSkpl5e4jzuWJ7ZpxT0IcvaNDTaxORBo6hRQiteyHtBymL9hM6uEiAAa1bsLTIzsR3cTf5MpERESkIXE4DJZuO8Ss5an8sv8YADarhau6NOfuIXG0bx5kboEiIiikEKk1uUXlPP/ldv6z4QAATQK8+euV7RnRNQKLRZdOioiISN0or3TwWXIGs5enOj808fawcl2vKO4aFEvLxn4mVygi8iuFFCI1zDAM/rvhAM99uZ2jxRUA3NS3JQ//qR3Bfp4mVyciIiINRVFZJZ/+tJ+5K9M4mFcKQKCPB7f2a8W4/jE0DfQ2uUIRkd9TSCFSg1KyC5m+YDM/7skFoF14IM+O7kzPVo1MrkxEREQaityict5fk877a9M5dvwDk6aB3owfGMNNfVsS6KMPTUTEdSmkEKkBpRV2Zn6fwqzlqVTYDXw8rTx4cRvuGBijKbtERESkTmQcK2HuyjQ+Xbefkgo7ANGN/bh7SByju0fi42kzuUIRkT+mkELkAq3afYRHF24mPacYgKFtm/LUyE5Eher+ThEREal9uw8VMHt5Gp8lZ1B5fB7RTpFB3DMknks7hWPTNKIiUo8opBA5T0cKy3hm8TYWJmcCEBbkzeNXdeSyTuEaGFNERERq3cZ9x5izcg/fbDvkXNY/rjH3JMQxML6JjkdEpF5SSCFSTQ6Hwb/W7+f5L7eTX1qJxQK39Ytm6vA2usdTREREapVhGCzfdZgXk3LYejgLAIsF/tQhnIkJcXSLCjG3QBGRC6SQQqQadmYVMH3BZtbvPQpAx4ggnhvdma46IBAREZFaVGl38OWWLGYnpbLtYD4AnjYLo7pFcveQOOKbBZhcoYhIzVBIIXIOSsrtvLZsN2+vSKPSYeDnZWPq8Lbc1q8VHhoYU0RERGpJaYWd/244wFsr0tiXWzX+lZ+XjWHR3jw8qg8tQv1NrlBEpGYppBD5A9/vzOaxz7awP7cEgOEdwnhiREciQnxNrkxERETcVX5pBR/9sI93Vu3hSGEZAI38PBnXP4ab+7Zg765tNA/2MblKEZGap5BC5Ayy80t5cvE2vth0EICIYB+eGNGR4R3DTa5MRERE3FV2QSnvrk7nn2v3UlBWCVQdg9w1OJbre0fh5+WB3W5nr8l1iojUFoUUIr9hdxh89ONe/vH1TgrKKrFZLdzeP5oHL2mDv7f+ZERERKTm7c0p4q0VafxnwwHKKx0AtG4WwMQhcYzoFoGnbi8VkQZCZ1wiJ9mamce0BVv4Zf8xALpGhfDc6E50jAg2tzARERFxS1sz85i9PI0vNmXiMKqWdW8Zwr0J8Qxr1wyrVdOIikjDopBCBCgqq+Tlb3bx7pp07A6DQG8P/t+lbbm5bytsOjgQERGRGmQYBj/uyWVWUirLdx12Lk9o25R7hsTRJyYUi0XHHyLSMCmkkAbvm22HePyzLWTmlQJwRZfmPHZlB8KCNBiViIiI1ByHw+Db7YeYtTyVjfuOAWC1wJVdIpg4JI4OEUHmFigi4gIUUkiDlXmshCc+38rSbYcAaNHIl6dHdWJo22YmVyYiIiLupMLu4LPkTGYvTyUluxAALw8r1/VqwYRBcbRs7GdyhSIirkMhhTQ4lXYH76/dy0tLd1JUbsfDauGuwbFMTmyNr5fN7PJERESkBhiGgXF8jAe7w8BuGFTaHWCxOm/ldDgMKhwO53pVP3f8/1R94eNhc44LUVJup9LhOP74Sesf/8bTw4KfV9XhdXmlg8MFpcz/OYN//rCXQwVV04j6e9m4tmcLru/TkrZhgc5tHykso8Lu+E0NVX0ABHp7EuznCVTdpppVWMnenGJsNiuGcXI9VV/FNg1w9pR+pOjXuk/ZdtXXTQO9CfX3AiCnsIxD+WUYGKe8Lid+1sNmoX3zX6/4+GX/MRzHVzzlNTn+XXRjfxoHeAOwP7eYg3mlzhoNwOFwsDu7jNK0HAJ9vejSIgSoCnbW7ck95f04uXaAzpHBzrp3ZOVz8FjpqeudtH6ovxc9WzVyvn4rdx9xbunU16/q/wNbNyHYt+r1/ik9l4PHr7g1TnpRTnwZ2ciX3tGhQNX7mJReQqojA6vVWvV76PyBqv9d2bW58/fkm22HOHz8d8M4TT3twgOd296XU8z3O7NPef1OrgPgtv7Rzt/vf6/fT15xxRm33Ts61PmabM3MI2nn4VN6NAxwGAYHDxbyY34a9w5t7XyemUkplFY4Ting5N+pSzqE0TUqBIC1qTms3H34lMedr4oBIX5e3JMQB1T9rT7/5fZTeju5doDre0c5fwe/2nyQtWk5p13PAFqG+jFxSNW280sqyCqsRFyfQgppUDYdOMZf5m9ma2Y+AD1bNeK50Z1pGx5ocmUiIg3T0rRi3tmRjAXL7w8wDWjXPJAHLm4DwKH8Uv66cMtpT4RO/MxjV3WgVWN/AF77bjcb9h7l17VOPcG4KLYx9w2NB2DXoQKe+HzrWU+IZt3cw3myNX3BZnZmFZyyXQMoKizC/4e1XNElgvGDYgH4IS3nDw+6F943wDl7w/j3f+LA0ZJTX4uT6hk3IJqb+7YCYPGmTF76Zhec5iTVAPy8PPhqyiBnz5e/upL80opTtn3yz/z50naM6h4JwPtr9/LGt9l4fP39aU6GDFo08mPhfQOAqhPKPs9+e2qPvzmReuX6bgxrHwbAjK928OHa9N9t98Tr0i0qhE8n9AOq3vdBf/v+tCdZJ57j33f3o9fxE7kpn27ks+RMTuu/S7mkQxhv39oLgO1Z+Vzx2qrTr3vcsqlDnCf8Ez5cf/zk9vRu6B3FjKu7cLSonKcWb2XBxt/XUVRu5721e3lv7V5+eWy4M3gY+846th/MP+O2702I48+XtgPgux3ZPPjVEfhqxWnX9bBaSHnucuf317+1lkP5ZWfc9qNXtHf+vi5MzuTpxdvOuG6zQG/WTb/Y+f01s9dQYTfOuP4r13dz/k59+tM+3vw+9fQrLv+JduGBfP3AYACKy+3cPPfHM24X4IM7+jC4TVMA3l+Tzifr9p9x3YHxTfjn+L4AZBeUMfGfG8667cWTBhIcWTVw+lsr0vjm+JW3pzOia4QzSNibU8zrP+XBT5vPuP7gNk2dIcXs5anOf6dOZ1z/aOe2t2fl8/jnW89a9y0X/Tqe2qykVPYcKTrjuv83vI0zpNh0II9/LNl5xnUDUk4NKWYlpVJQeuYT/ogQX2dI8fO+o8xMOsP7DkQ39nOGFA7DYO6qPWdcF6r+7T4RUqxLz+WDtWeekLdHyxBnSFFSYedYqeOs2xbXoJBCGoSC0gpeXLqLD9am4zAgyMeDv1zenut7RWnUbBERE6XmVvDtnqwzPl5Y9utBcHG53XmL3pk8eEkb59dbMvJOGZTwtxr5eTm/LiitYE1qzlm3ffKJ2I6sgjOfWOTm0TWqkfPb/JIKfjmQd9ZtnxwYpB4uOuuJxdGi8pPqriTt8JnXDfzN1NkHjhaTf5YTi+Jyu/ProrJKcksdUHr6k9uA32z76PFPbM/k5NevvNJB0UnP9VsnpuB0fm+vuROL314dUJOKyit5atE2Plm3j5KK0/d3YjxMCyd9mgx42ix42izHHztppeP/8zjpeMVmteBjs2C1WU+sgsXi/Ck8bKce2wT7elJW6Thl3RPbtVjAx/PXK0n9vWw0C/R21npiqyfqbnI8qDshMsSXCrvxa1/Omi1YLOB30lWqjfy8iG3i72zqRD1lpaX4+PjQMvTX2148rBba/eZDpJN7tFg4ZWr4yBBfurQI/vVlO6lHgPhmv15Z4u1hdZ6cn7y9k1/3k+tuHx5IYWnlGXs8+cOuIF9Puod7ERgY5DzGtHDqa+7l8et0sr2iG9HIz+uU34uT62nf/Ndthwf5cEXn5qes+Nttnzze6iUdwjhcUObcJr+pu134r1fExDbx5/peUb8+9/F1DcMgJyeHyPBTb4e+vlcUpZX23/1+nKinTdivr3eXFsHcMSDmpL5OfR0b+f/6b7HVYnGGCqdu89faY5v6O9cf3KYpgT6ev3vtTqzbPPjXMeb8vT1o4qerpusDi2HU5j/V5rPb7SQnJ9OtWzdstgv/pazp7ZnN3fsxDIOvtmTx5KKtzk8QRnWLYPoVHWga6P0HWzOXu7839Zk79QLqx5W5Wi+1sU/9cOmPOALDsVosVScgvzlQbx7sy8Udqj59zy+tYPEvB6seP8PB6yUdwpwHvGtSjpCZV/r7A9fjB/8nX6KdU1jGqpQjxx///QG/BQuJ7Zo5bwtcm5pDXkm5s1KLpeqy9fQ9e4iNjaVVE3/nCUB2QSlbMvKc2zmx8ZNPGAfFN3Ge0KxPz6W0wvG714LjdUeF+tKiUdXJXHZ+qTPQON3rZ7Na6N7y18Bk04Fj2B3GKT2e/JpEhPg4rxbJOlbMqg2baNumLTab7XcnaF42q/MKA8MwSD1cyK9+f+LSLMjHGWzkFpVTcPyKjhMnTCfz9rDS7PgA1naHQXZB6Smv38knOlggxNfLeeJXUFrhDDlOnNTaHXa2bNlC506d8PHydJ7c2h0GReWVv3ktTj0RPvl2j7JKO4Zx6u8FQNrhQt5emcZnyRmcyFfahwdyT0Icl3UKx9OjZv9+Xe3fhgvhTr2A+nFl7tSLu9OVFOK29ucW89hnW/j++P110Y39eGZUZwa2bmJyZSIickLnZt5069bqnA4Yg3w8ualvy3Pedv/4c//3vnGANyO7RZ7z+v3iGv9umd1uJ7n8IN3aNzuln2aBPiS2O/cZo07ctnAumgX5OE/mz8WJ+/3PRdNAb2JCPOkQEfSH74/FYiG+2bnfOhnq7+UcS+CP2KwWmgf7nvO2T3yqejK73U6gl5UQP69TerFZLQSdZv0z8f5N2JC8/xizklJYuu2Q8wqNi2JDuSchnsGtm2gaURGR86CQQtxOpcNgzoo0XltWNaCPp83CPUPiuHdo/CmXM4qIiIhUl2EYrNx9hFlJqaxN+/UWoeEdwpiYEEePk65cERGR6lNIIW7l531H+X/f5rAvr+qe5b4xoTw7ulO1Pt0RERER+S27w+CrLQeZlZTqHIDbw2phVPdIJg6J1bGGiEgNUUghbiGvuIK/LdnBJ+v2YRjQyM+TaZe355qeLXSppYiIiJy30go783/O4K0VqaTnFAPg62njxj4tGT8ohoiQc78VRURE/phCCqnXDMPg81+qpso6Ulg12nlitC9/u6kfTYN00CAiIiLnp6C0go9+3Mc7q/ZwuKBq8O0QP0/G9Y/mtn7Rp8xIICIiNUchhdRbe3OKeHThFud85XFN/Xl6ZEe88/ad82BcIiIiIic7XFDGu6v38OEPeyk4Pl1r82Af7hoUyw19ovDz0uGziEht0r+yUu+UVzp4a0Uqry9LoazSgZeHlUlD45kwJBYPCyQn7zO7RBEREaln9uUU89bKVP69/oBzCtP4ZgFMHBLHiK4RzilORUSkdimkkHrlx7Qcpi/cQkp21VzsA+Ob8PSoTsQ08QeqphgTEREROVfbMvOZvTyVxZsycRyfRrRrVAj3JsRxSfswrFaNbSUiUpcUUki9cLSonOe/2s6/1x8AoEmAF3+9sgMjukZoYEwRERGpFsMw+Cn9KLOSUvh+52Hn8sFtmnLPkDguig3V8YWIiEkUUohLMwyD//2cwXNfbie3qGpgzBv7tOSRS9sR7OdpcnUiIiJSnzgcBt/vPMSs5als2HsUAKsFLu/cnIlD4ugUGWxyhSIiopBCXFbq4UKmL9jMD2m5ALQNC+TZ0Z3oFR1qcmUiIiJSn1TYHSTtLeGR5avZffyWUS+blWt6tWDCoFiij982KiIi5lNIIS6ntMLOzKRUZielUm534ONpZcqwNowfFIOnTYNWiYiIyLkpKbfzr5/28dbKNDKPlQIQ4O3BLRe14o4B0TQL8jG5QhER+S2FFOJSVqcc4dGFW9hzpAiAhLZNeXpkJ6JC/UyuTEREROqLY8XlfLB2L++tSXfeLhrsbWXCkHhu6RdNsK9uGRURcVUKKcQlHCks49kvtrNgYwYAzQK9efyqjlzeOVwDV4mIiMg5OZhXwjsr9/Dxun0Ul1fN+NUy1I+7BkYT55FD356x2Gw2k6sUEZGzUUghpnI4DP69fj/Pf7WDvJIKLBa49aJWTP1TW4J89CmHiIiI/LHUw4XMWZ7Kgo0ZVNir5hFt3zyIexLiuLxTOBYMkpNzTa5SRETOhUIKMc2uQwVMm7+Z9cdH1+7QPIjnxnSmW1SIuYWJiIhIvfDL/mPMSkplybYsjKpsgj4xodybEMeQNk2dV2Pa7XYTqxQRkeowJaRYu3YtL730Eqmpqfj6+nLppZfy//7f/8PH5/eDF73//vu8//77HDt2jMjISO6//37+9Kc/mVC11JSScjuvL9vNWyvSqHQY+HnZeOiSNozrH42HBsYUERGRszAMg9UpOcxMSmFNao5z+cXtw7gnIZaerTQLmIhIfVbnIUVubi533303TzzxBKNGjeLIkSPceeedvPXWW0yePPmUdZcvX86cOXP45z//SWxsLEuWLOGBBx7gm2++oUWLFnVdutSApJ3Z/PWzLezPLQHgkg5hPDGiI5EhviZXJiIiIq7M7jBYsjWLWUmpbM7IA8DDamFEtwgmDomjTVigyRWKiEhNqPOQIjQ0lDVr1hAQEIBhGBw7doyysjJCQ3+feqelpWEYhvM/m82Gp6cnHh66S6W+yc4v5anF21i86SAAzYN9eGJER/7UMdzkykRERMSVlVXaWfBzBnNWpDln//LxtHJD75aMHxRDi0aaAUxExJ2YcrYfEBAAwJAhQzh06BC9evVizJgxv1vviiuuYP78+Vx++eXYbDYsFgv/+Mc/CA+v/oltTd2LeGI77nJvY23343AYfPLTfv6+ZBeFZZVYLTCufyumDGtNgLdHjT+vO70/7tQLuFc/7tQLqB9XVlu9XOjsBtqnnp76qVmFZZV8sm4/81ank11QBkCwrye3XtSSW/u1ItTf65zrM7uXmuZO/bhTL6B+XJmr7lPl9yyGcWKYobpXWlpKXl4e//d//4e3tzdz58495fGMjAxeeeUVxo4dS7t27Vi0aBHPPPMMn376KW3btj2n57Db7SQnJ9dC9fJH0o9VMHtDPrtzKwCIa+TBxJ7BxDbSrB0iImbq2bPnef2c9qlSF/JK7XyRUszXKcUUVVQdpob6WhnRxp+LY33x9dD4VSLiOs53nypnZmpIccKmTZu49tprWbduHcHBwc7lEydOpEePHkyYMMG57Pbbb6dt27Y88sgj57TtEwdUnTt3rpGUy263s3nz5hrbntlqo5+iskpeXZbCe2v2YncYBHjbmHpJG27u2xKb1VIjz3Em7vT+uFMv4F79uFMvoH5cWW31cr7b0j717NTPhTlwtJi5K9P594YDlFU6AIht4s/dg2MY0TUCrwsIJ/TeuC536gXUjytztX2qnFmd3+7x888/M23aND7//HO8vKou0ysvL8fT0xNf31MHT8zMzKRTp06nLPPw8MDTs/qfxNtsthr/ZXSnX8ia6ufbbYd4/POtZByrGhjzis7NeeyqDoQF/X7mltrkTu+PO/UC7tWPO/UC6seVuVov2qeenfqpnh1Z+cxOSmXRpoPYHVWfnXVtEcw9CfEM7xCGtQY/4NB747rcqRdQP67MnXpxV3UeUrRt25bS0lJefPFFpk6dyuHDh/nb3/7GNddc4wwtTkhMTOSf//wnQ4cOpX379ixdupQff/yRhx56qK7Llj9wMK+EJz7fypKthwCIDPHlmVGdGNqumcmViYiIiCv6KT2XWUmpLNuR7Vw2qHUT7kmIo19sYyyW2r36UkREXFOdhxT+/v7MnTuX5557jgEDBhAYGMhVV13FfffdB0D37t158sknGTFiBPfffz82m41JkyaRl5dHq1atePPNN2nfvn1dly1nYHcYvL8mnReX7qSo3I6H1cKdg2KYMqw1fl6ahUVERER+ZRgGy3ZkMysplfV7jwJgscDlnZpzT0IcnSKD/2ALIiLi7kw5i4yPj2fevHmnfWzjxo3Orz08PJg0aRKTJk2qq9KkGjYdOMa0BZvZkpEPQI+WITw3pjPtwoNMrkxERERcSaXdweJNB5mVlMrOQwUAeNmsXN0zkgmD44hp4m9yhSIi4ir0UbdUW0FpBS8u3cUHa9NxGBDk48HDl7Xjxt4ta/S+UREREanfSsrt/GfDft5akcaBo1XjVfl72bjlolbcMTCmzsesEhER16eQQs6ZYRgs2ZrF459v5VB+1XzlI7tF8OgVHWga6G1ydSIiIuIq8oor+PCHdN5dnU5OUTkAjf29uGNgDLf0bUWwn6YjFxGR01NIIefkwNFiHv9sK98dH9yqVWM/nhnViUGtm5pcmYiIiLiKQ/mlvLNqDx/9sJeicjsALRr5cvfgWK7tFYWPp0bUFxGRs1NIIWdVYXcwb9UeXvl2NyUVdjxtFiYOieO+ofE60BAREREA0g4X8taKNOb/nEG53QFAu/BA7kmI44rOzfGwWU2uUERE6guFFHJGP+87yrT5m9mRVTXAVZ+YUJ4b3Yn4ZoEmVyYiIiKuYPOBPGYtT+GrLVkYRtWyPtGh3JMQR0LbpppGVEREqk0hhfxOXkkFf/96Bx+v24dhQIifJ9Mub8+1PVvoYENERKSBMwyDNak5zEpKZVXKEefyi9s3Y+KQOHpFh5pYnYiI1HcKKcTJMAwWbTrIU4u2caSwamDMq3u0YNrl7WgcoIExRUREGjK7w2Dp1ixmLU9l04E8AGxWCyO6RjBxSBxtw3WlpYiIXDiFFALA3pxiHl+0jZW7qz4RiW3qz7OjOtMvrrHJlYmIiIiZyiodLPo5gznL00g7UgSAt4eVG3pHMX5QLFGhfiZXKCIi7kQhRQNXXungf9sL+d+CVZRVOvDysHJfQjwTE2Lx9tDAmCIiIg1VYVkln+8q4r4ly8k6PvV4kI8Ht/WP5rb+0TTRVZYiIlILFFI0YOv25DJ9wWZ2ZxcCMCC+Mc+M6kxME3+TKxMRERGz5BSW8f6adN5fu5e8kgoAwoK8GT8wlhv7tiTAW4ePIiJSe7SXaYCOFpUz46sd/Gv9fgCCvK08MaITo3toYEwREZGG6sDRYuau3MOnP+2jtKJqGtGIABuTLmnPmJ4tdIWliIjUCYUUDYhhGMz/OYNnv9xOblE5ANf3asFlkeUM6hahgEJERKQB2plVwJzlqXz2SyZ2R9U8op0jg5k4OIamFQfp2b0FNpsCChERqRsKKRqItMOFPLpwC2tScwBoExbAs6M70yMqmOTkZHOLExERkTq3YW8us5JS+XZ7tnPZwPgm3JMQR/+4xjgcDpKTs0ysUEREGiKFFG6utMLOrKRUZiWlUm534ONpZfKw1owfGIuXhxW73W52iSIiIlJHDMMgaedhZiWlsi49FwCLBS7rFM7EIXF0aRFiboEiItLgKaT4/+3deXRU9fnH8U/2FYgBRPYlEBYDJGwBAgYJIjuEgCBlcUEQrHqoaIUfrRYUu+BCf0cjFtDyw0KVgiyCWKkgCiaiAaOAgbCEgGELhKxMkrm/Pyg5xoQsmMy9M7xf53COc+ebmefhkftMnpm5Xxe2J/WCFmz4rmS7sOjQhlo0Okwt6rNVGAAAt5KiYrs+TP5R8TtTdTgjW5Lk5eGmuG7NNOOuNmrTMNDkCAEAuIYhhQu6mHNVL354SOuTTkuSGtbx0XMjO2l458ZcdwIAgFtIQWGx3t93Sm/tPqZTmfmSpABvD02KbKGH+7XRHfV8TY4QAIDSGFK4ELvd0Ptfn9LirYeVlV8oNzdpcmRLPT2kver6epkdHgAAcJCs/EKt/vKk3v7iuC7kXLtYdnCAtx7s20pT+rRUkL+3yRECAFA+hhQu4sjZbM3fkKyvTlySJHVsXFeLY8MU0eI2kyMDAACOcu5KgVZ8cVzvfpmmnKtFkqSmQX6acVcb3dejufy82aUDAGBtDCmcXEFhsf73P0f01mfHVFhsyM/LQ08NDtUDfVvJ08Pd7PAAAIADnLiQq2WfHdO/vk6Xrdgu6dpOXrMGhGhElyby4jUBAMBJMKRwYrtSzut3H3yntMw8SdKgjrfrD6PD1DTIz+TIAACAI3x3Okvxu1K1LflH2Y1rx7q3vE2zB4To7va3y92da1EBAJwLQwondC67QIu2HNLmA2ckSXfU9dXzo+7UvXc24sKYAAC4OMMwtPfYRcXvTNXuIxdKjg/scLtmDQhRz1bBJkYHAMAvw5DCidjtht5NTNOfPzqs7IIiubtJD/Rtrd8MDlWgD6UEAMCV2e2GPj54VvG7UnXg1GVJkoe7m0Z2aayZ0SHq2LiuuQECAFAD+M3WSRz68Yrmb0hWUtplSVLnpvX00tjOCmtaz9zAAABArbIV2fXB/tNatitVqedzJUk+nu6a0LO5HunfRs2D/U2OEACAmsOQwuLybEVa+skRLf/8uIrthgJ9PDV3cKim9GklD75nCgCAy8q9WqQ1iWla8flx/ZhVIEmq4+upaX1a6YGoVmoQ6GNyhAAA1DyGFBa249BZ/X7j9zp9OV+SNDTsDj038k7dUc/X5MgAAEBtycy16Z09J/T3PSeUlV8oSWpYx0fT+7XWpMgWquPrZXKEAADUHoYUFpSRVaDnN32vj77PkHRtf/OFo+9UTMdGJkcGAABqy+nL+Vq++5jWJp5SfmGxJKlVfX/NjA5RbERT+Xp5mBwhAAC1jyGFhRTbDa3ae0Ivf5yinKtF8nB30/R+rfXkoHby96ZUAAC4oiNns/XmrmPauP+0iv67j2hY07qaFd1WQ8Lu4OudAIBbCr/5WkRyepbmb0hW8uksSVJEiyAtju3MlboBAHBR36RdUvzOVP374NmSY31D6mvWgBD1a9uAbcUBALckhhQmy7lapJc//kF/33NCduPaBbF+O6SDJvVqIXfeOQEAwKUYhqFdKecVvzNVCcczJUlubtK9ne7QowNCFN48yNwAAQAwGUMKkxiGoe3fZ+j5TQeVceXaFbtHdW2iBSM66vY6XBgTAABXUlRs19bvMhS/M1WHfrwiSfLycFNsRFPNuCtEbW8PNDlCAACsgSGFCdIv5en5Td/rk0PnJEktgv31wpgw3RXa0OTIAABATSooLNa6r9P11mfHlJaZJ0ny9/bQpF4t9HD/1mpcz8/kCAEAsBaGFA5UVGzX21+c0Cv/TlF+YbG8PNw0864Q/XpgW67YDQCAC7lSUKjVX57Uys9P6ELOVUnSbf5eejCqtab2aakgf2+TIwQAwJoYUjhIUtolzd/wXclHPHu1CtaLsWFq16iOyZEBAICacqmgWH/e/oP+kXBK2VeLJF3bSvyR/q11X8/m7NYFAEAl6JS1LCu/UH/ZfljvJqTJMKQgfy/NH9pR47o348KYAAC4iJMXc7VsV6re33dehfbzkqR2twfq0egQjQpvIi8Pd5MjBADAOTCkqCWGYWjLtz9q4ZaDOp997WOeY7s11f8M66j6gT4mRwcAAGrC92ey9OauY/rw2zOyG9eORTSvp9l3t1NMh9t5QwIAgGpiSFEL0i7m6Xcbv9OulGvvpLRpEKAXYsPUN6SByZEBAIBfyjAMJRzPVPzO1JJeL0nRoQ0U08SuSYN6ytOTl1gAANwMOmgNshXZ9bfdx/TXHUd0tcgubw93zb47RLMGhMjHkwtjAgDgzOx2Q58cOqv4XalKSrssSXJ3k0Z0aaJHo0PUvlGA9u/fLzc3Pj0BAMDNYkhRQ746kan/2ZCslLM5kqS+IfX1wpgwtWnIvucAADgzW5Fdmw6c0Zu7UnX03LU+7+3prvt6NNOM/iFqUd9fklRcXGxmmAAAuASGFL/Q5Tyb/rjtsNZ+dUqSFBzgrQXDOyo2oinvpAAA4MTybEVam3hKy3cf05msAklSHR9PTenTUg9GtVbDOlxjCgCAmsaQ4iYZhqENSel6YcshXcy1SZIm9myuZ4d2YO9zAACc2KVcm/6+94Te2XNCl/MKJUkN6/jo4X6tNSmyher6epkcIQAAroshxU04k12kl9/epz2pFyVd22LsxdjO6tU62OTIAADAzTpzOV/Ldx/XmsQ05Rde++pGy/r+mnlXiMZ2aypfL64vBQBAbWNIUU0fJv+o33x8QUV2ycfTXU/EtNMj/dvI25P9zwEAcEZHz2XrzV3H9EHSaRX9dx/RO5vU1awBIRoa1lgebCMKAIDDMKSopt1Hrg0o+rdroBfGhKll/QCzQwIAADchKe2S3tyVqo8PnpVxbTah3m2CNWtAW93VrgHXlgIAwAQMKarp+ZGd1Du4QKOju7MHOgAATsYwDO0+ckHxO1O199jFkuODOzXSowNC1K3FbSZGBwAA+C27mny9PNQqyIt3VwAAcCLFdkPbvvtR8TtT9f2ZK5IkT3c3jYloqkej26jt7XVMjhAAAEgMKQAAgAsrKCzW+m9Oa9lnqTp5MU+S5Ofloft7tdD0/q3VJMjP5AgBAMBPMaQAAAAuJ7ugUO8mpGnF58d1PvuqJCnI30sP9G2laX1a6bYAtgsHAMCKGFIAAACXcT77qt7+4rj+78uTyi4okiQ1ruerR/q30cRezeXvzUsfAACsjE4NAACcXtrFPL21O1Xv7UuXrcguSWp7e6AejQ7RqK5N2CocAAAnwZACAAA4rYNnrujNXana8u0Z2f+7jWh48yDNHhCiQR0byd2dC10DAOBMGFIAAACnYhiGEo9nKn5Xqnb+cL7keHRoQ80aEKLI1sHswgUAgJNiSAEAAJyC3W7oP4fPKX5Xqr4+eUmS5O4mDevcWI9GhyisaT2TIwQAAL8UQwoAAGBphcV2bT5wRm/uSlXK2RxJkreHu8b1aKYZ/duoVYMAkyMEAAA1hSEFAACwpHxbsf75VZr+tvu4Tl/OlyQF+nhqcu+WeiiqlW6v62tyhAAAoKYxpAAAAJZyOc+mVXtP6p09J5SZa5MkNQj01kP9WutXkS1Vz8/L5AgBAEBtYUgBAAAs4cesfK3YfVz/SExTnq1YktQi2F8z7mqjcd2bydfLw+QIAQBAbWNIAQAATJV6PkfLPz+hDUmnVVh8bR/Rjo3rataAEA0Lu0OeHu4mRwgAAByFIQUAADDF2SsF+vOeS0o887mMa7MJRbYO1qwBIYoObcg2ogAA3IIYUgAAAFOs+PyEEk5flSTd06mRHo0OUfeWt5kcFQAAMBNDCgAAYIppfVoqL+uCpg7sqo5NgswOBwAAWABf8gQAAKZoepufxnUMVGijOmaHAgAALIIhBQAAAAAAsASGFAAAAAAAwBIYUgAAAAAAAEswZUixd+9ejR8/Xt26dVNUVJQWLVqkgoKCctcmJiZq/PjxioiIUHR0tJYtW+bgaAEAAAAAgCM4fEiRmZmpmTNn6v7779e+ffu0YcMGJSYm6q233iqzNjU1VTNmzNCkSZP0zTffaNmyZVq5cqU++ugjR4cNAAAAAABqmcO3IA0ODtaePXsUGBgowzB0+fJlXb16VcHBwWXW/uMf/1BMTIxiY2MlSR06dNDatWsVGBjo6LABAAAAAEAtc/iQQlLJkCE6Olpnz55Vjx49NHbs2DLrvv32W/Xt21e/+c1v9MUXXyg4OFgPPPCAJkyYUO3nLC4u/sVx//RxaurxzEY+1uVKuUiulY8r5SKRj5XVVi4eHh6/6OfpqeUjH+typVwk18rHlXKRyMfKrNpTUZabYRiGWU9eUFCgrKwszZ07Vz4+Plq+fHmp+wcPHqzz58/r1VdfVb9+/ZSUlKSZM2dq8eLFGjJkSJWeo7i4WPv376+F6AEAcE7du3e/qZ+jpwIAUNrN9lTcmCmfpLjO19dXvr6+evrppzV+/HhlZWWpXr16Jfd7e3srJiZGAwYMkCT17NlTo0eP1rZt26o8pLiuc+fONTLlKi4uVnJyco09ntnIx7pcKRfJtfJxpVwk8rEyq+ZCTy0f+ViXK+UiuVY+rpSLRD5W5kq5uDqHDym++eYbzZ8/X5s2bZK3t7ckyWazycvLS35+fqXWhoSEyGazlTpWXFysm/nwh4eHR43+z1jTj2c28rEuV8pFcq18XCkXiXyszGq50FMrRj7W5Uq5SK6VjyvlIpGPlblSLq7K4bt7tG/fXgUFBXr55Zdls9l0+vRp/elPf9K4ceNKhhbXTZw4UTt27NDGjRtlGIa++uorbd68WaNHj3Z02AAAAAAAoJY5fEgREBCg5cuX68iRI4qKitKUKVPUt29fzZ8/X5IUERGhTZs2SZL69OmjN954Q6tWrVL37t01b948/fa3v1VMTIyjwwYAAAAAALXMlGtStG3bVitXriz3vqSkpFK3o6OjFR0d7YiwAAAAAACAiRz+SQoAAAAAAIDyMKQAAAAAAACWYOoWpI5wfSeQ4uLiGnm8649TU49nNvKxLlfKRXKtfFwpF4l8rKw2c3F3d5ebm1u1foaeWjHysS5XykVyrXxcKReJfKzMaj0VN+Zm3Mx+nk7EZrMpOTnZ7DAAALCU8PDwam/BRk8FAKCsm+mpuDGXH1LY7XYVFRUx3QIA4Cdupi/SUwEAKIu+WLNcfkgBAAAAAACcAxfOBAAAAAAAlsCQAgAAAAAAWAJDCgAAAAAAYAkMKQAAAAAAgCUwpAAAAAAAAJbAkAIAAAAAAFgCQwoAAAAAAGAJDCkqkZ6erl//+tfq3bu3IiMjNXv2bJ06deqG6w8cOKDx48crIiJCAwcO1Pvvv+/AaKsuPz9fEyZM0Pr16ytc99xzzyksLEwRERElf/75z386KMqqq2o+Vq5PXl6e5s2bp8jISHXv3l3PPPOMcnNzb7jeirW5ePGiZs+erR49eigyMlIvvviiioqKyl27a9cujRw5UuHh4Ro6dKg+/fRTB0dbserkMn36dHXu3LlULT777DMHR1w1mZmZuueee5SQkHDDNVavzXVVycUZanP48GE9+OCD6tWrl6KiovTMM88oMzOz3LXOUpsboada77xdHnqqNWpDT7Xuefs6eqr1anMr9VSXZqBCo0aNMubPn2/k5uYaOTk5xrx584wRI0aUu/by5ctGr169jNWrVxuFhYXGnj17jIiICOPAgQMOjrpiKSkpRmxsrBEaGmr861//qnBtbGyssX79egdFdnOqmo/V6/Pss88a06ZNMy5dumRcuHDBmDx5svH888/fcL0VazN58mTjqaeeMvLy8oy0tDRj+PDhxt/+9rcy644fP2507tzZ+Pe//20UFhYaH374odGlSxcjIyPDhKjLV9VcDMMwIiMjjYSEBAdHWH379u0zBg0aZISGhhpffvlluWucoTaGUbVcDMP6tcnPzzeioqKMpUuXGlevXjUyMzONRx55xJg5c2aZtc5Sm4rQU6133v45eqp10FOtjZ5qPbdaT3VlfJKiAllZWWrQoIGefPJJ+fv7KyAgQFOnTlVKSoqysrLKrP/4448VFBSkX/3qV/L09FSfPn00cuRIvfvuuyZEX769e/dq2rRpio2NVZMmTSpca7PZlJKSorCwMAdFV33VycfK9cnPz9fmzZv1xBNPKCgoSPXr19fcuXO1fv165efnl1lvxdqcPHlSiYmJevrpp+Xn56fmzZtr9uzZ5f79btiwQT169NCgQYPk6empYcOGqWfPnqa/a3VddXI5deqUsrKy1KlTJxMirboNGzZo7ty5mjNnTqXrrFwbqeq5OENtzpw5ow4dOuixxx6Tt7e3brvtNk2YMEFfffVVmbXOUJuK0FOtd97+OXqqdWpDT7XueVuip1rVrdRTXZ2n2QGYraCgQGfPni33voYNG2rFihWljm3fvl1NmzZVvXr1yqw/cuSIQkNDSx1r27at1q1bV3MBV6KyfDp06KBPP/1UPj4+evvttyt8rMOHD6uoqEh//etf9fXXX6tOnTqKi4vT9OnT5e7umPlWTeZjdn0qyiU/P1+FhYWl4gsJCVFBQYFOnDihjh07llpvhdr83JEjRxQUFKRGjRqVHAsJCdGZM2d05coV1a1bt+T40aNHy63F4cOHHRZvRaqTS3JysgICAjRnzhwlJyerQYMGeuCBBzRu3DgzQr+hfv36aeTIkfL09KzwhYjVayNVPRdnqE2bNm20fPnyUse2b9+uO++8s8xaZ6gNPfXGrHDepqfSU81AT7VubSR66k9ZrTa3slt+SHHgwAFNnTq13Ptef/11DRo0qOT2mjVrtHLlSsXHx5e7Pjc3V35+fqWO+fr6Ki8vr+YCrkR18qlMdna2evXqpSlTpuiVV17RoUOH9Nhjj8nd3V3Tp0+vqZArVJP5mF2finJ58sknJUn+/v4lx67HWt53aK1Qm58r7+/3+u28vLxSL0LMrkVlqpOLzWZTeHi45syZo3bt2ikhIUGPP/64AgICNHToUIfGXZGGDRtWaZ3VayNVPRdnqc11hmHotdde06effqrVq1eXud8ZakNPvTErnLfpqfRUM9BTrVsbiZ76U1arza3slh9SREZG6ocffqhwjc1m00svvaStW7dq2bJl6t27d7nr/Pz8lJ2dXepYQUGBAgICaizeylQln6qKiopSVFRUye0uXbpo2rRp2rp1q8Oadk3mY3Z9Ksrl4MGDWrp0qfLz80viuf6R1MDAwDLrrVCbn/P39y/zMdrrt3/+d+zn56eCgoJSxxz9b6Ui1cllzJgxGjNmTMntfv36acyYMdq2bZslm3ZlrF6b6nCm2uTk5GjevHn6/vvvtXr1arVv377MGmeoDT31xqxw3qan0lPNQE+1bm2qw5lq4yo99VbGNSkqkZmZqSlTpmj//v1at27dDV9MSVJoaKiOHDlS6tjRo0fVrl272g6zVnzyySdau3ZtqWM2m02+vr4mRfTLWLk+rVu3lpeXl44ePVpyLDU1VV5eXmrVqlWZ9VasTbt27XT58mVduHCh5FhqaqruuOMO1alTp9RaK9dCql4u69at07Zt20ods9ls8vHxcUisNc3qtakOZ6lNWlqa4uLilJOTo3Xr1pX7YkpyjdrQU6113v4lrFwfeqp1aiHRU61cm+pwltrcSj3VlTGkqEBhYaGmT5+uwMBArVmzRs2bN69w/T333KMLFy7onXfeUWFhob788ktt3rxZcXFxDoq4ZhmGoZdeekl79+6VYRhKSkrSqlWrNGHCBLNDuylWro+fn5+GDh2qJUuWKDMzU5mZmVqyZIlGjBhR7oskK9amVatW6t69uxYvXqycnBydOnVKb7zxRrnfVRw1apQSExO1detWFRUVaevWrUpMTNTo0aNNiLys6uSSk5OjRYsW6eDBg7Lb7dq5c6e2bNnitP9OrF6b6nCG2mRlZWnatGnq1q2bVqxYoeDg4Buudfba0FOtd97+JaxcH3qqtc4N9FTr1qY6nKE2t1JPdXlmbSviDLZv326EhoYanTt3NsLDw0v9OX36tGEYhjFs2DAjPj6+5Ge+/fZbY8KECUZERIQRExNT6XZkZrr77rvLxPfzfNasWWMMHjzY6Nq1qxETE2OsXr3a0WFWWVXysXJ9srOzjQULFhh9+/Y1evbsaTz77LNGbm5uyf3OUJvz588bjz/+uNGrVy+jd+/exh//+EejqKjIMAzDCA8PNzZu3Fiy9rPPPjNGjRplhIeHG8OHDzd27txpVtjlqmoudrvdeP311427777b6NKlizF8+HBj27ZtZoZeqZ9vMeZstfmpinJxhtqsXLnSCA0NNbp27VqmzxiGc9fm5+ip1jxv3wg91fza0FOted7+OXqqddxKPdXVuRmGYZg9KAEAAAAAAODrHgAAAAAAwBIYUgAAAAAAAEtgSAEAAAAAACyBIQUAAAAAALAEhhQAAAAAAMASGFIAAAAAAABLYEgBAAAAAAAsgSEFAEu6evWqMjIyzA4DAACnR08F4EwYUgC4ofT0dLVv317p6ekOf+5JkyZpz549Dn9eAABqAz0VAKqGIQUAS7p06ZLZIQAA4BLoqQCcCUMKAJX64IMPNGjQIPXt21cLFixQTk6OJGnPnj0aN26cevTooeHDh2vTpk0lP5OTk6MFCxZo8ODBCg8PV//+/fXmm2+W3D9w4ECtX7++5HZCQoLat28vSXrooYd05swZPffcc1q4cKEefvhh/e53vysV08yZM7V06dLaTBsAgBpHTwWAijGkAFCpffv26b333tOmTZuUkpKixYsX6/Dhw5o1a5ZmzJihhIQELVq0SIsXL9bu3bslSUuWLFF6errWrVunpKQkLViwQK+++qpOnjxZ6fOtXLlSTZo00R/+8Af9/ve/V1xcnD766CPZbDZJ0oULF/TFF19o7NixtZo3AAA1jZ4KABVjSAGgUs8++6yCg4PVoEEDPfHEE9q8ebPWrl2rmJgYDR48WB4eHurWrZvuu+8+vfvuu5Kkxx9/XK+99poCAwOVkZEhHx8fSdK5c+eq/fyDBg2Su7u7/vOf/0iSNm/erIiICDVv3rzmkgQAwAHoqQBQMU+zAwBgfc2aNSv578aNG8tmsyk9PV0JCQnq0aNHyX3FxcVq0aKFJOnixYt68cUXdfDgQTVr1kxhYWGSJLvdXu3n9/b21ogRI7Rx40YNGTJEGzZs0EMPPfQLswIAwPHoqQBQMYYUACp19uxZBQYGSrp2dXJ/f381btxYsbGxWrhwYcm6c+fOyTAMSdKTTz6pgQMHasWKFfL09NSlS5f03nvvlax1d3dXYWFhye3KLuoVFxen++67T0lJSUpPT9e9995bkykCAOAQ9FQAqBhf9wBQqb/85S/KyspSRkaGli5dqgkTJmjcuHHasmWLPv/8c9ntdp04cUKTJ0/WypUrJUnZ2dny9fWVh4eHMjMz9cILL0hSyYuokJAQ7dixQwUFBTp//rxWrVpV6jm9vb2VnZ1dcrtTp05q27atFi5cqGHDhsnPz89B2QMAUHPoqQBQMYYUACoVERGhIUOGKC4uTj179tScOXPUtWtXvfLKK3rllVfUs2dPTZ48WQMHDtRTTz0lSXrppZe0detWdevWTWPHjlWjRo3UqVMnpaSkSJLmzp2r3NxcRUVFaerUqRo1alSp5xw3bpxeffVVzZ07t+TY2LFjdfDgQcXFxTkueQAAahA9FQAq5mZc/xwZAFjcjh07tGTJEm3bts3sUAAAcGr0VABWxTUpAFjepUuXlJGRofj4eN1///1mhwMAgNOipwKwOr7uAcDyvvvuO02cOFENGzbUxIkTzQ4HAACnRU8FYHV83QMAAAAAAFgCn6QAAAAAAACWwJACAAAAAABYAkMKAAAAAABgCQwpAAAAAACAJTCkAAAAAAAAlsCQAgAAAAAAWAJDCgAAAAAAYAkMKQAAAAAAgCUwpAAAAAAAAJbw/3RiSwu+tq0kAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Your answer here\n", "# Predictions\n", "three_preds = me.predictions(three_interact, newdata=predmat)\n", "\n", "# Plot to show interaction pattern overall - lots of ways to do this, e.g.\n", "sns.lineplot(data=three_preds,\n", " x='beauty', \n", " y='estimate',\n", " style='gender',\n", " hue='tenure')\n", "\n", "# Or\n", "sns.relplot(data=three_preds,\n", " x='beauty', y='estimate',\n", " style='tenure', col='gender',\n", " kind='line')\n" ] }, { "cell_type": "markdown", "id": "9602f4ba-6845-414b-96f1-fb59f5e2a9e9", "metadata": {}, "source": [ "If you have visualised it correctly, you should see the general pattern that male evaluations increase with beauty, but they are lower with tenure. Females on the other only show a positive beauty association *with* tenure, and no association without it.\n", "\n", "Now, are those differences meaningful? To test that we need to make a decision about how we want to evaluate our interaction. That depends on the question, since there are many ways to interpret interactions of this complexity.\n", "\n", "Do this in steps. First, is the association between beauty and evaluations different for females and males? " ] }, { "cell_type": "code", "execution_count": 24, "id": "855c8231-82f0-462e-b134-4cbf9e439ec3", "metadata": { "editable": true, "slideshow": { "slide_type": "" }, "tags": [ "hide-input" ] }, "outputs": [ { "data": { "text/html": [ "
\n", "shape: (1, 8)
termestimatestd_errorstatisticp_values_valueconf_lowconf_high
strf64f64f64f64f64f64f64
"Row 1 - Row 2"-0.089490.072316-1.2374950.2159032.211543-0.2312260.052246
" ], "text/plain": [ "shape: (1, 8)\n", "┌───────────────┬──────────┬───────────┬───────┬─────────┬──────┬────────┬────────┐\n", "│ Term ┆ Estimate ┆ Std.Error ┆ z ┆ P(>|z|) ┆ S ┆ 2.5% ┆ 97.5% │\n", "│ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- │\n", "│ str ┆ str ┆ str ┆ str ┆ str ┆ str ┆ str ┆ str │\n", "╞═══════════════╪══════════╪═══════════╪═══════╪═════════╪══════╪════════╪════════╡\n", "│ Row 1 - Row 2 ┆ -0.0895 ┆ 0.0723 ┆ -1.24 ┆ 0.216 ┆ 2.21 ┆ -0.231 ┆ 0.0522 │\n", "└───────────────┴──────────┴───────────┴───────┴─────────┴──────┴────────┴────────┘\n", "\n", "Columns: term, estimate, std_error, statistic, p_value, s_value, conf_low, conf_high" ] }, "execution_count": 24, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Your answer here\n", "# Slopes are required\n", "me.slopes(three_interact, newdata=predmat, variables='beauty', by=['gender'], hypothesis='pairwise')" ] }, { "cell_type": "markdown", "id": "832f7b9d-ccdc-4c0e-86e1-26b91225bed4", "metadata": {}, "source": [ "Is the association between beauty and evaluations different between tenure status?" ] }, { "cell_type": "code", "execution_count": 25, "id": "3c77d7bd-1951-4be4-8442-6e672b490209", "metadata": { "editable": true, "slideshow": { "slide_type": "" }, "tags": [ "hide-input" ] }, "outputs": [ { "data": { "text/html": [ "
\n", "shape: (1, 8)
termestimatestd_errorstatisticp_values_valueconf_lowconf_high
strf64f64f64f64f64f64f64
"Row 1 - Row 2"-0.0834010.073588-1.1333510.2570671.959784-0.2276320.060829
" ], "text/plain": [ "shape: (1, 8)\n", "┌───────────────┬──────────┬───────────┬───────┬─────────┬──────┬────────┬────────┐\n", "│ Term ┆ Estimate ┆ Std.Error ┆ z ┆ P(>|z|) ┆ S ┆ 2.5% ┆ 97.5% │\n", "│ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- │\n", "│ str ┆ str ┆ str ┆ str ┆ str ┆ str ┆ str ┆ str │\n", "╞═══════════════╪══════════╪═══════════╪═══════╪═════════╪══════╪════════╪════════╡\n", "│ Row 1 - Row 2 ┆ -0.0834 ┆ 0.0736 ┆ -1.13 ┆ 0.257 ┆ 1.96 ┆ -0.228 ┆ 0.0608 │\n", "└───────────────┴──────────┴───────────┴───────┴─────────┴──────┴────────┴────────┘\n", "\n", "Columns: term, estimate, std_error, statistic, p_value, s_value, conf_low, conf_high" ] }, "execution_count": 25, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Your answer here\n", "me.slopes(three_interact, newdata=predmat, variables='beauty', by=['tenure'], hypothesis='pairwise')" ] }, { "cell_type": "markdown", "id": "fa2d813b-c978-4385-a5a4-69994dfaf283", "metadata": {}, "source": [ "Finally, generate the slopes for all four conditions (male, female, tenured, non-tenured)." ] }, { "cell_type": "code", "execution_count": 26, "id": "7db0289c-a82e-4cef-b532-40fa86c5adab", "metadata": { "editable": true, "slideshow": { "slide_type": "" }, "tags": [ "hide-input" ] }, "outputs": [ { "data": { "text/html": [ "
\n", "shape: (4, 11)
gendertenuretermcontrastestimatestd_errorstatisticp_values_valueconf_lowconf_high
strstrstrstrf64f64f64f64f64f64f64
"female""no""beauty""mean(dY/dX)"0.0006390.0778960.0082020.9934560.009472-0.1520340.153312
"male""no""beauty""mean(dY/dX)"0.1368520.0956171.4312560.1523572.714474-0.0505530.324257
"female""yes""beauty""mean(dY/dX)"0.1307630.0586092.2310990.0256755.2835150.0158910.245636
"male""yes""beauty""mean(dY/dX)"0.173530.048843.5530720.00038111.3588310.0778070.269254
" ], "text/plain": [ "shape: (4, 11)\n", "┌────────┬────────┬────────┬─────────────┬───┬──────────┬─────────┬─────────┬───────┐\n", "│ gender ┆ tenure ┆ Term ┆ Contrast ┆ … ┆ P(>|z|) ┆ S ┆ 2.5% ┆ 97.5% │\n", "│ --- ┆ --- ┆ --- ┆ --- ┆ ┆ --- ┆ --- ┆ --- ┆ --- │\n", "│ str ┆ str ┆ str ┆ str ┆ ┆ str ┆ str ┆ str ┆ str │\n", "╞════════╪════════╪════════╪═════════════╪═══╪══════════╪═════════╪═════════╪═══════╡\n", "│ female ┆ no ┆ beauty ┆ mean(dY/dX) ┆ … ┆ 0.993 ┆ 0.00947 ┆ -0.152 ┆ 0.153 │\n", "│ male ┆ no ┆ beauty ┆ mean(dY/dX) ┆ … ┆ 0.152 ┆ 2.71 ┆ -0.0506 ┆ 0.324 │\n", "│ female ┆ yes ┆ beauty ┆ mean(dY/dX) ┆ … ┆ 0.0257 ┆ 5.28 ┆ 0.0159 ┆ 0.246 │\n", "│ male ┆ yes ┆ beauty ┆ mean(dY/dX) ┆ … ┆ 0.000381 ┆ 11.4 ┆ 0.0778 ┆ 0.269 │\n", "└────────┴────────┴────────┴─────────────┴───┴──────────┴─────────┴─────────┴───────┘\n", "\n", "Columns: gender, tenure, term, contrast, estimate, std_error, statistic, p_value, s_value, conf_low, conf_high" ] }, "execution_count": 26, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Your answer here\n", "me.slopes(three_interact, newdata=predmat, variables='beauty', by=['tenure', 'gender'])" ] }, { "cell_type": "markdown", "id": "0067943d-7b0a-459d-ba62-6201c066ca46", "metadata": {}, "source": [ "Finally, lets ask a sex-specific question of the model. Compare the slopes of females who are tenured and non-tenured here - are they different?" ] }, { "cell_type": "code", "execution_count": 27, "id": "c2423e4c-7d48-4724-931c-60aea03b2b28", "metadata": { "editable": true, "slideshow": { "slide_type": "" }, "tags": [ "hide-input" ] }, "outputs": [ { "data": { "text/html": [ "
\n", "shape: (1, 8)
termestimatestd_errorstatisticp_values_valueconf_lowconf_high
strf64f64f64f64f64f64f64
"b1=b3"-0.1301240.098895-1.3157820.1882472.409299-0.3239550.063707
" ], "text/plain": [ "shape: (1, 8)\n", "┌───────┬──────────┬───────────┬───────┬─────────┬──────┬────────┬────────┐\n", "│ Term ┆ Estimate ┆ Std.Error ┆ z ┆ P(>|z|) ┆ S ┆ 2.5% ┆ 97.5% │\n", "│ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- │\n", "│ str ┆ str ┆ str ┆ str ┆ str ┆ str ┆ str ┆ str │\n", "╞═══════╪══════════╪═══════════╪═══════╪═════════╪══════╪════════╪════════╡\n", "│ b1=b3 ┆ -0.13 ┆ 0.0989 ┆ -1.32 ┆ 0.188 ┆ 2.41 ┆ -0.324 ┆ 0.0637 │\n", "└───────┴──────────┴───────────┴───────┴─────────┴──────┴────────┴────────┘\n", "\n", "Columns: term, estimate, std_error, statistic, p_value, s_value, conf_low, conf_high" ] }, "execution_count": 27, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Your answer here\n", "me.slopes(three_interact, newdata=predmat, \n", " variables='beauty', by=['tenure', 'gender'],\n", " hypothesis='b1=b3')" ] }, { "cell_type": "markdown", "id": "c56c3cb4-e675-4fab-96a2-ed9a66088530", "metadata": {}, "source": [ "Then compare this for males." ] }, { "cell_type": "code", "execution_count": 28, "id": "aedb97f7-b39a-4c25-b038-913222954b7d", "metadata": { "editable": true, "slideshow": { "slide_type": "" }, "tags": [ "hide-input" ] }, "outputs": [ { "data": { "text/html": [ "
\n", "shape: (1, 8)
termestimatestd_errorstatisticp_values_valueconf_lowconf_high
strf64f64f64f64f64f64f64
"b2=b4"-0.0366780.107497-0.3412020.7329510.44821-0.2473690.174013
" ], "text/plain": [ "shape: (1, 8)\n", "┌───────┬──────────┬───────────┬────────┬─────────┬───────┬────────┬───────┐\n", "│ Term ┆ Estimate ┆ Std.Error ┆ z ┆ P(>|z|) ┆ S ┆ 2.5% ┆ 97.5% │\n", "│ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- │\n", "│ str ┆ str ┆ str ┆ str ┆ str ┆ str ┆ str ┆ str │\n", "╞═══════╪══════════╪═══════════╪════════╪═════════╪═══════╪════════╪═══════╡\n", "│ b2=b4 ┆ -0.0367 ┆ 0.107 ┆ -0.341 ┆ 0.733 ┆ 0.448 ┆ -0.247 ┆ 0.174 │\n", "└───────┴──────────┴───────────┴────────┴─────────┴───────┴────────┴───────┘\n", "\n", "Columns: term, estimate, std_error, statistic, p_value, s_value, conf_low, conf_high" ] }, "execution_count": 28, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Your answer here\n", "me.slopes(three_interact, newdata=predmat, \n", " variables='beauty', by=['tenure', 'gender'],\n", " hypothesis='b2=b4')" ] }, { "cell_type": "markdown", "id": "d068eddf-ee94-4897-9afb-8d049b32dfbd", "metadata": {}, "source": [ "What effect does beauty have on teaching evaluations?" ] }, { "cell_type": "markdown", "id": "df7b9fe3-1364-4953-a4ba-6f08cb992155", "metadata": {}, "source": [ "### h. Personalised predictions\n", "For the final exercise, we will work to understand how to use models to make individual predictions. \n", "\n", "We'll use a new dataset, recorded by Daniel Hamermesh, an economist interested in the effects of physical attractiveness in the labour market (e.g. the halo effect). You can find this dataset (called `beauty` by the authors), here: https://vincentarelbundock.github.io/Rdatasets/csv/wooldridge/beauty.csv\n", "\n", "Also, you can see a description of these predictors here: https://vincentarelbundock.github.io/Rdatasets/doc/wooldridge/beauty.html\n", "Take a look!\n", "\n", "Read it into a dataframe called `beauty`, and print the first 5 rows." ] }, { "cell_type": "code", "execution_count": 29, "id": "c1383176-e4cc-4910-bf43-b4f503b656a9", "metadata": { "editable": true, "slideshow": { "slide_type": "" }, "tags": [ "hide-input" ] }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
rownameswagelwagebelavgabvavgexperlooksuniongoodhlthblackfemalemarriedsouthbigcitysmllcityserviceexpersqeduc
015.731.7457150130401011001190014
124.281.4539530028301011101078412
237.962.07442901354010100010122510
3411.572.44841600383010010101144416
4511.422.4353660027301001001072916
\n", "
" ], "text/plain": [ " rownames wage lwage belavg abvavg exper looks union goodhlth \\\n", "0 1 5.73 1.745715 0 1 30 4 0 1 \n", "1 2 4.28 1.453953 0 0 28 3 0 1 \n", "2 3 7.96 2.074429 0 1 35 4 0 1 \n", "3 4 11.57 2.448416 0 0 38 3 0 1 \n", "4 5 11.42 2.435366 0 0 27 3 0 1 \n", "\n", " black female married south bigcity smllcity service expersq educ \n", "0 0 1 1 0 0 1 1 900 14 \n", "1 0 1 1 1 0 1 0 784 12 \n", "2 0 1 0 0 0 1 0 1225 10 \n", "3 0 0 1 0 1 0 1 1444 16 \n", "4 0 0 1 0 0 1 0 729 16 " ] }, "execution_count": 29, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Your answer here\n", "beauty = pd.read_csv('https://vincentarelbundock.github.io/Rdatasets/csv/wooldridge/beauty.csv')\n", "beauty.head()" ] }, { "cell_type": "markdown", "id": "b8ef23bd-bfae-41e4-a963-2a8f8e894fe7", "metadata": {}, "source": [ "We will aim to build a model that predicts wages/income from a series of predictors, one of which includes `looks`, which runs from 1 - 5 (5 being very attractive). Specifically, we'll use:\n", "\n", "- Looks\n", "- years of workforce experience\n", "- union member status\n", "- health status\n", "- ethnicity (here only black vs other)\n", "- sex\n", "- years of education\n", "\n", "Using the description in the above link, build a linear regression model that predicts wages from those variables." ] }, { "cell_type": "code", "execution_count": 30, "id": "39b2f115-bd8a-4f19-be3a-6baf1fc31fb9", "metadata": { "editable": true, "slideshow": { "slide_type": "" }, "tags": [ "hide-input" ] }, "outputs": [ { "data": { "text/html": [ "\n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "
OLS Regression Results
Dep. Variable: wage R-squared: 0.196
Model: OLS Adj. R-squared: 0.192
No. Observations: 1260 F-statistic: 43.61
Covariance Type: nonrobust Prob (F-statistic): 2.48e-55
\n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "
coef std err t P>|t| [0.025 0.975]
Intercept -1.4917 0.952 -1.567 0.117 -3.359 0.376
looks 0.3944 0.176 2.237 0.025 0.049 0.740
female -2.4942 0.260 -9.603 0.000 -3.004 -1.985
exper 0.0860 0.011 8.145 0.000 0.065 0.107
union 0.7966 0.268 2.969 0.003 0.270 1.323
goodhlth -0.0606 0.481 -0.126 0.900 -1.004 0.882
black 0.0028 0.460 0.006 0.995 -0.899 0.904
educ 0.4520 0.047 9.630 0.000 0.360 0.544


Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified." ], "text/latex": [ "\\begin{center}\n", "\\begin{tabular}{lclc}\n", "\\toprule\n", "\\textbf{Dep. Variable:} & wage & \\textbf{ R-squared: } & 0.196 \\\\\n", "\\textbf{Model:} & OLS & \\textbf{ Adj. R-squared: } & 0.192 \\\\\n", "\\textbf{No. Observations:} & 1260 & \\textbf{ F-statistic: } & 43.61 \\\\\n", "\\textbf{Covariance Type:} & nonrobust & \\textbf{ Prob (F-statistic):} & 2.48e-55 \\\\\n", "\\bottomrule\n", "\\end{tabular}\n", "\\begin{tabular}{lcccccc}\n", " & \\textbf{coef} & \\textbf{std err} & \\textbf{t} & \\textbf{P$> |$t$|$} & \\textbf{[0.025} & \\textbf{0.975]} \\\\\n", "\\midrule\n", "\\textbf{Intercept} & -1.4917 & 0.952 & -1.567 & 0.117 & -3.359 & 0.376 \\\\\n", "\\textbf{looks} & 0.3944 & 0.176 & 2.237 & 0.025 & 0.049 & 0.740 \\\\\n", "\\textbf{female} & -2.4942 & 0.260 & -9.603 & 0.000 & -3.004 & -1.985 \\\\\n", "\\textbf{exper} & 0.0860 & 0.011 & 8.145 & 0.000 & 0.065 & 0.107 \\\\\n", "\\textbf{union} & 0.7966 & 0.268 & 2.969 & 0.003 & 0.270 & 1.323 \\\\\n", "\\textbf{goodhlth} & -0.0606 & 0.481 & -0.126 & 0.900 & -1.004 & 0.882 \\\\\n", "\\textbf{black} & 0.0028 & 0.460 & 0.006 & 0.995 & -0.899 & 0.904 \\\\\n", "\\textbf{educ} & 0.4520 & 0.047 & 9.630 & 0.000 & 0.360 & 0.544 \\\\\n", "\\bottomrule\n", "\\end{tabular}\n", "%\\caption{OLS Regression Results}\n", "\\end{center}\n", "\n", "Notes: \\newline\n", " [1] Standard Errors assume that the covariance matrix of the errors is correctly specified." ], "text/plain": [ "\n", "\"\"\"\n", " OLS Regression Results \n", "==============================================================================\n", "Dep. Variable: wage R-squared: 0.196\n", "Model: OLS Adj. R-squared: 0.192\n", "No. Observations: 1260 F-statistic: 43.61\n", "Covariance Type: nonrobust Prob (F-statistic): 2.48e-55\n", "==============================================================================\n", " coef std err t P>|t| [0.025 0.975]\n", "------------------------------------------------------------------------------\n", "Intercept -1.4917 0.952 -1.567 0.117 -3.359 0.376\n", "looks 0.3944 0.176 2.237 0.025 0.049 0.740\n", "female -2.4942 0.260 -9.603 0.000 -3.004 -1.985\n", "exper 0.0860 0.011 8.145 0.000 0.065 0.107\n", "union 0.7966 0.268 2.969 0.003 0.270 1.323\n", "goodhlth -0.0606 0.481 -0.126 0.900 -1.004 0.882\n", "black 0.0028 0.460 0.006 0.995 -0.899 0.904\n", "educ 0.4520 0.047 9.630 0.000 0.360 0.544\n", "==============================================================================\n", "\n", "Notes:\n", "[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.\n", "\"\"\"" ] }, "execution_count": 30, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Your answer here\n", "beauty_mod = smf.ols('wage ~ looks + female + exper + union + goodhlth + black + educ', data=beauty).fit()\n", "beauty_mod.summary(slim=True)" ] }, { "cell_type": "markdown", "id": "53fa7f84-2f61-4bd2-84ed-8075f66b7443", "metadata": {}, "source": [ "Despite the number of variables, with some effort we could interpret these coefficients. For example, we might say that as your looks are rated one point higher on the scale, your hourly wage increases by .39 cents, all else being equal. But it becomes more difficult when trying to interpret the implications across multiple predictors. \n", "\n", "Use the model to generate predictions for two individuals, one male and one female. The female should have 17 years of education and the male 12 (about average). \n", "\n", "What's the difference in their wages? Is it statistically significant?" ] }, { "cell_type": "code", "execution_count": 31, "id": "8b2ec684-b08f-4432-ac58-4d0d1b1c4964", "metadata": { "editable": true, "slideshow": { "slide_type": "" }, "tags": [ "hide-input" ] }, "outputs": [ { "data": { "text/html": [ "
\n", "shape: (1, 8)
termestimatestd_errorstatisticp_values_valueconf_lowconf_high
strf64f64f64f64f64f64f64
"b1=b4"-0.2342650.353636-0.6624460.5076850.977993-0.9273780.458849
" ], "text/plain": [ "shape: (1, 8)\n", "┌───────┬──────────┬───────────┬────────┬─────────┬───────┬────────┬───────┐\n", "│ Term ┆ Estimate ┆ Std.Error ┆ z ┆ P(>|z|) ┆ S ┆ 2.5% ┆ 97.5% │\n", "│ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- │\n", "│ str ┆ str ┆ str ┆ str ┆ str ┆ str ┆ str ┆ str │\n", "╞═══════╪══════════╪═══════════╪════════╪═════════╪═══════╪════════╪═══════╡\n", "│ b1=b4 ┆ -0.234 ┆ 0.354 ┆ -0.662 ┆ 0.508 ┆ 0.978 ┆ -0.927 ┆ 0.459 │\n", "└───────┴──────────┴───────────┴────────┴─────────┴───────┴────────┴───────┘\n", "\n", "Columns: term, estimate, std_error, statistic, p_value, s_value, conf_low, conf_high" ] }, "execution_count": 31, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Your answer here\n", "me.predictions(beauty_mod,\n", " newdata=me.datagrid(beauty_mod, \n", " female=[1, 0],\n", " educ=[17, 12]),\n", " hypothesis='b1=b4'\n", " )" ] }, { "cell_type": "markdown", "id": "fb64a26c-e8a0-40f1-bd05-9992c82aca9a", "metadata": {}, "source": [ "Consider next the implications of looks on earnings. \n", "\n", "What's the difference in earnings for a male with 5 years work experience, 15 years of education, who has a 5 in terms of looks, and a counterpart who has the same values but has a 3 on looks?" ] }, { "cell_type": "code", "execution_count": 32, "id": "e172e5ae-4873-49bb-a41b-93b6351d64ca", "metadata": { "editable": true, "slideshow": { "slide_type": "" }, "tags": [ "hide-input" ] }, "outputs": [ { "data": { "text/html": [ "
\n", "shape: (2, 26)
femaleexpereduclooksrowidestimatestd_errorstatisticp_values_valueconf_lowconf_highrownameswagelwagebelavgabvavguniongoodhlthblackmarriedsouthbigcitysmllcityserviceexpersq
i64i64i64i64i32f64f64f64f64f64f64f64i64f64f64i64i64i64i64i64i64i64i64i64i64i64
0515306.8407910.24758227.630430.0inf6.355547.3260423906.306691.65880001010000100
0515517.6295430.37108420.5601320.0inf6.9022318.3568553906.306691.65880001010000100
" ], "text/plain": [ "shape: (2, 11)\n", "┌────────┬───────┬──────┬───────┬───┬─────────┬─────┬──────┬───────┐\n", "│ female ┆ exper ┆ educ ┆ looks ┆ … ┆ P(>|z|) ┆ S ┆ 2.5% ┆ 97.5% │\n", "│ --- ┆ --- ┆ --- ┆ --- ┆ ┆ --- ┆ --- ┆ --- ┆ --- │\n", "│ str ┆ str ┆ str ┆ str ┆ ┆ str ┆ str ┆ str ┆ str │\n", "╞════════╪═══════╪══════╪═══════╪═══╪═════════╪═════╪══════╪═══════╡\n", "│ 0 ┆ 5 ┆ 15 ┆ 3 ┆ … ┆ 0 ┆ inf ┆ 6.36 ┆ 7.33 │\n", "│ 0 ┆ 5 ┆ 15 ┆ 5 ┆ … ┆ 0 ┆ inf ┆ 6.9 ┆ 8.36 │\n", "└────────┴───────┴──────┴───────┴───┴─────────┴─────┴──────┴───────┘\n", "\n", "Columns: female, exper, educ, looks, rowid, estimate, std_error, statistic, p_value, s_value, conf_low, conf_high, rownames, wage, lwage, belavg, abvavg, union, goodhlth, black, married, south, bigcity, smllcity, service, expersq" ] }, "execution_count": 32, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Your answer here\n", "me.predictions(beauty_mod,\n", " newdata=me.datagrid(beauty_mod, \n", " female=[0],\n", " exper=[5],\n", " educ=[15],\n", " looks=[3, 5])\n", " )" ] }, { "cell_type": "markdown", "id": "add3e964-a56e-4fc7-a3d5-23ebde3273b8", "metadata": {}, "source": [ "If you have mastered the above exercise, then you have a solid understanding of how most of the modern world works - for example, insurance companies use this exact approach to determine your premiums! As ever, these inferences are only as good as the model and the data. " ] } ], "metadata": { "colab": { "provenance": [] }, "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.8" } }, "nbformat": 4, "nbformat_minor": 5 }